
Using and Porting GNU CC

Richard M. Stallman

last updated 16 Dec 1992

for version 2.3

(preliminary draft, which will change)

Copyright c© 1988, 1989, 1992 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions

for verbatim copying, provided also that the sections entitled “GNU General Public License” and

“Boycott” are included exactly as in the original, and provided that the entire resulting derived

work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,

under the above conditions for modified versions, except that the sections entitled “GNU Gen-

eral Public License” and “Boycott”, and this permission notice, may be included in translations

approved by the Free Software Foundation instead of in the original English.

GNU GENERAL PUBLIC LICENSE 1

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change

it. By contrast, the GNU General Public License is intended to guarantee your freedom to share

and change free software—to make sure the software is free for all its users. This General Public

License applies to most of the Free Software Foundation’s software and to any other program whose

authors commit to using it. (Some other Free Software Foundation software is covered by the GNU

Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public

Licenses are designed to make sure that you have the freedom to distribute copies of free software

(and charge for this service if you wish), that you receive source code or can get it if you want it,

that you can change the software or use pieces of it in new free programs; and that you know you

can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights

or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you

if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must

give the recipients all the rights that you have. You must make sure that they, too, receive or can

get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license

which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands

that there is no warranty for this free software. If the software is modified by someone else and

2 Using and Porting GNU CC

passed on, we want its recipients to know that what they have is not the original, so that any

problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the

danger that redistributors of a free program will individually obtain patent licenses, in effect making

the program proprietary. To prevent this, we have made it clear that any patent must be licensed

for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION

1. This License applies to any program or other work which contains a notice placed by the

copyright holder saying it may be distributed under the terms of this General Public License.

The “Program”, below, refers to any such program or work, and a “work based on the Pro-

gram” means either the Program or any derivative work under copyright law: that is to say, a

work containing the Program or a portion of it, either verbatim or with modifications and/or

translated into another language. (Hereinafter, translation is included without limitation in

the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License;

they are outside its scope. The act of running the Program is not restricted, and the output

from the Program is covered only if its contents constitute a work based on the Program

(independent of having been made by running the Program). Whether that is true depends

on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s source code as you receive

it, in any medium, provided that you conspicuously and appropriately publish on each copy

an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that

refer to this License and to the absence of any warranty; and give any other recipients of the

Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option

offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a work

based on the Program, and copy and distribute such modifications or work under the terms of

Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the

files and the date of any change.

GNU GENERAL PUBLIC LICENSE 3

b. You must cause any work that you distribute or publish, that in whole or in part contains

or is derived from the Program or any part thereof, to be licensed as a whole at no charge

to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause

it, when started running for such interactive use in the most ordinary way, to print or

display an announcement including an appropriate copyright notice and a notice that

there is no warranty (or else, saying that you provide a warranty) and that users may

redistribute the program under these conditions, and telling the user how to view a copy

of this License. (Exception: if the Program itself is interactive but does not normally

print such an announcement, your work based on the Program is not required to print an

announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that

work are not derived from the Program, and can be reasonably considered independent and

separate works in themselves, then this License, and its terms, do not apply to those sections

when you distribute them as separate works. But when you distribute the same sections as

part of a whole which is a work based on the Program, the distribution of the whole must be

on the terms of this License, whose permissions for other licensees extend to the entire whole,

and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written

entirely by you; rather, the intent is to exercise the right to control the distribution of derivative

or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program

(or with a work based on the Program) on a volume of a storage or distribution medium does

not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2) in object

code or executable form under the terms of Sections 1 and 2 above provided that you also do

one of the following:

a. Accompany it with the complete corresponding machine-readable source code, which must

be distributed under the terms of Sections 1 and 2 above on a medium customarily used

for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for

a charge no more than your cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be distributed under the terms

of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corresponding

source code. (This alternative is allowed only for noncommercial distribution and only if

you received the program in object code or executable form with such an offer, in accord

with Subsection b above.)

4 Using and Porting GNU CC

The source code for a work means the preferred form of the work for making modifications to

it. For an executable work, complete source code means all the source code for all modules

it contains, plus any associated interface definition files, plus the scripts used to control com-

pilation and installation of the executable. However, as a special exception, the source code

distributed need not include anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the operating system on

which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated

place, then offering equivalent access to copy the source code from the same place counts as

distribution of the source code, even though third parties are not compelled to copy the source

along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly provided

under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Pro-

gram is void, and will automatically terminate your rights under this License. However, parties

who have received copies, or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

6. You are not required to accept this License, since you have not signed it. However, nothing

else grants you permission to modify or distribute the Program or its derivative works. These

actions are prohibited by law if you do not accept this License. Therefore, by modifying or

distributing the Program (or any work based on the Program), you indicate your acceptance

of this License to do so, and all its terms and conditions for copying, distributing or modifying

the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the recipient

automatically receives a license from the original licensor to copy, distribute or modify the

Program subject to these terms and conditions. You may not impose any further restrictions

on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing

compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or for any other

reason (not limited to patent issues), conditions are imposed on you (whether by court order,

agreement or otherwise) that contradict the conditions of this License, they do not excuse you

from the conditions of this License. If you cannot distribute so as to satisfy simultaneously

your obligations under this License and any other pertinent obligations, then as a consequence

you may not distribute the Program at all. For example, if a patent license would not permit

royalty-free redistribution of the Program by all those who receive copies directly or indirectly

through you, then the only way you could satisfy both it and this License would be to refrain

entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,

the balance of the section is intended to apply and the section as a whole is intended to apply

in other circumstances.

GNU GENERAL PUBLIC LICENSE 5

It is not the purpose of this section to induce you to infringe any patents or other property

right claims or to contest validity of any such claims; this section has the sole purpose of

protecting the integrity of the free software distribution system, which is implemented by

public license practices. Many people have made generous contributions to the wide range of

software distributed through that system in reliance on consistent application of that system;

it is up to the author/donor to decide if he or she is willing to distribute software through any

other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the

rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either by patents

or by copyrighted interfaces, the original copyright holder who places the Program under this

License may add an explicit geographical distribution limitation excluding those countries, so

that distribution is permitted only in or among countries not thus excluded. In such case, this

License incorporates the limitation as if written in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the General Public

License from time to time. Such new versions will be similar in spirit to the present version,

but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version

number of this License which applies to it and “any later version”, you have the option of

following the terms and conditions either of that version or of any later version published

by the Free Software Foundation. If the Program does not specify a version number of this

License, you may choose any version ever published by the Free Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs whose distribution

conditions are different, write to the author to ask for permission. For software which is

copyrighted by the Free Software Foundation, write to the Free Software Foundation; we

sometimes make exceptions for this. Our decision will be guided by the two goals of preserving

the free status of all derivatives of our free software and of promoting the sharing and reuse of

software generally.

NO WARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-

RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS

AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”WITHOUTWARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-

MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-

6 Using and Porting GNU CC

FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR

CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-

ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY

AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO

YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-

SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES

OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-

BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GENERAL PUBLIC LICENSE 7

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,

the best way to achieve this is to make it free software which everyone can redistribute and change

under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of

each source file to most effectively convey the exclusion of warranty; and each file should have at

least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive

mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

8 Using and Porting GNU CC

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the

General Public License. Of course, the commands you use may be called something other than ‘show

w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign

a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary pro-

grams. If your program is a subroutine library, you may consider it more useful to permit linking

proprietary applications with the library. If this is what you want to do, use the GNU Library

General Public License instead of this License.

Contributors to GNU CC 9

Contributors to GNU CC

In addition to Richard Stallman, several people have written parts of GNU CC.

• The idea of using RTL and some of the optimization ideas came from the program PO written at

the University of Arizona by Jack Davidson and Christopher Fraser. See “Register Allocation

and Exhaustive Peephole Optimization”, Software Practice and Experience 14 (9), Sept. 1984,

857-866.

• Paul Rubin wrote most of the preprocessor.

• Leonard Tower wrote parts of the parser, RTL generator, and RTL definitions, and of the Vax

machine description.

• Ted Lemon wrote parts of the RTL reader and printer.

• Jim Wilson implemented loop strength reduction and some other loop optimizations.

• Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed the support for the

Sony NEWS machine.

• Charles LaBrec contributed the support for the Integrated Solutions 68020 system.

• Michael Tiemann of Cygnus Support wrote the front end for C++, as well as the support for in-

line functions and instruction scheduling. Also the descriptions of the National Semiconductor

32000 series cpu, the SPARC cpu and part of the Motorola 88000 cpu.

• Jan Stein of the Chalmers Computer Society provided support for Genix, as well as part of

the 32000 machine description.

• Randy Smith finished the Sun FPA support.

• Robert Brown implemented the support for Encore 32000 systems.

• David Kashtan of SRI adapted GNU CC to the Vomit-Making System (VMS).

• Alex Crain provided changes for the 3b1.

• Greg Satz and Chris Hanson assisted in making GNU CC work on HP-UX for the 9000 series

300.

• William Schelter did most of the work on the Intel 80386 support.

• Christopher Smith did the port for Convex machines.

• Paul Petersen wrote the machine description for the Alliant FX/8.

• Alain Lichnewsky ported GNU CC to the Mips cpu.

• Devon Bowen, Dale Wiles and Kevin Zachmann ported GNU CC to the Tahoe.

• Jonathan Stone wrote the machine description for the Pyramid computer.

• Gary Miller ported GNU CC to Charles River Data Systems machines.

• Richard Kenner of the New York University Ultracomputer Research Laboratory wrote the

machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and the IBM

10 Using and Porting GNU CC

RS/6000 as well as the support for instruction attributes. He also made changes to better

support RISC processors including changes to common subexpression elimination, strength

reduction, function calling sequence handling, and condition code support, in addition to

generalizing the code for frame pointer elimination.

• Richard Kenner and Michael Tiemann jointly developed reorg.c, the delay slot scheduler.

• Mike Meissner and Tom Wood of Data General finished the port to the Motorola 88000.

• Masanobu Yuhara of Fujitsu Laboratories implemented the machine description for the Tron

architecture (specifically, the Gmicro).

• NeXT, Inc. donated the front end that supports the Objective C language.

• James van Artsdalen wrote the code that makes efficient use of the Intel 80387 register stack.

• Mike Meissner at the Open Software Foundation finished the port to the MIPS cpu, including

adding ECOFF debug support.

• Ron Guilmette implemented the protoize and unprotoize tools, the support for Dwarf sym-

bolic debugging information, and much of the support for System V Release 4. He has also

worked heavily on the Intel 386 and 860 support.

• Torbjorn Granlund of the Swedish Institute of Computer Science implemented multiply-by-

constant optimization and better long long support, and improved leaf function register allo-

cation.

• Mike Stump implemented the support for Elxsi 64 bit CPU.

Chapter 1: Protect Your Freedom—Fight “Look And Feel” 11

1 Protect Your Freedom—Fight “Look And Feel”

This section is a political message from the League for Programming Freedom to the
users of GNU CC. It is included here as an expression of support for the League on the
part of the Free Software Foundation.

Apple and Lotus are trying to create a new form of legal monopoly: a copyright on a class of user

interfaces. These monopolies would cause serious problems for users and developers of computer

software and systems. Xerox, too, has tried to make a monopoly for itself on window systems; their

suit against Apple was thrown out on a technicality, but Xerox has not said anything to indicate

it wouldn’t try again.

Until a few years ago, the law seemed clear: no one could restrict others from using a user

interface; programmers were free to implement any interface they chose. Imitating interfaces,

sometimes with changes, was standard practice in the computer field. The interfaces we know

evolved gradually in this way; for example, the Macintosh user interface drew ideas from the Xerox

interface, which in turn drew on work done at Stanford and SRI. 1-2-3 imitated VisiCalc, and dBase

imitated a database program from JPL.

Most computer companies, and nearly all computer users, were happy with this state of affairs.

The companies that are suing say it does not offer “enough incentive” to develop their products,

but they must have considered it “enough” when they made their decision to do so. It seems they

are not satisfied with the opportunity to continue to compete in the marketplace—not even with a

head start.

If companies like Xerox, Lotus, and Apple are permitted to make law through the courts, the

precedent will hobble the software industry:

• Gratuitous incompatibilities will burden users. Imagine if each car manufacturer had to arrange

the pedals in a different order.

• Software will become and remain more expensive. Users will be “locked in” to proprietary

interfaces, for which there is no real competition.

• Large companies have an unfair advantage wherever lawsuits become commonplace. Since

they can easily afford to sue, they can intimidate small companies with threats even when

they don’t really have a case.

• User interface improvements will come slower, since incremental evolution through creative

imitation will no longer be permitted.

12 Using and Porting GNU CC

• Even Apple, etc., will find it harder to make improvements if they can no longer adapt the

good ideas that others introduce, for fear of weakening their own legal positions. Some users

suggest that this stagnation may already have started.

• If you use GNU software, you might find it of some concern that user interface copyright

will make it hard for the Free Software Foundation to develop programs compatible with the

interfaces that you already know.

To protect our freedom from lawsuits like these, a group of programmers and users have formed

a new grass-roots political organization, the League for Programming Freedom.

The purpose of the League is to oppose new monopolistic practices such as user-interface copy-

right and software patents; it calls for a return to the legal policies of the recent past, in which

these practices were not allowed. The League is not concerned with free software as an issue, and

not affiliated with the Free Software Foundation.

The League’s membership rolls include John McCarthy, inventor of Lisp, Marvin Minsky,

founder of the Artificial Intelligence lab, Guy L. Steele, Jr., author of well-known books on Lisp and

C, as well as Richard Stallman, the developer of GNU CC. Please join and add your name to the

list. Membership dues in the League are $42 per year for programmers, managers and professionals;

$10.50 for students; $21 for others.

The League needs both activist members and members who only pay their dues.

To join, or for more information, phone (617) 243-4091 or write to:

League for Programming Freedom
1 Kendall Square #143
P.O. Box 9171
Cambridge, MA 02139

You can also send electronic mail to league@prep.ai.mit.edu.

Here are some suggestions from the League for things you can do to protect your freedom to

write programs:

• Don’t buy from Xerox, Lotus or Apple. Buy from their competitors or from the defendants

they are suing.

Chapter 1: Protect Your Freedom—Fight “Look And Feel” 13

• Don’t develop software to work with the systems made by these companies.

• Port your existing software to competing systems, so that you encourage users to switch.

• Write letters to company presidents to let them know their conduct is unacceptable.

• Tell your friends and colleagues about this issue and how it threatens to ruin the computer

industry.

• Above all, don’t work for the look-and-feel plaintiffs, and don’t accept contracts from them.

• Write to Congress to explain the importance of this issue.

House Subcommittee on Intellectual Property
2137 Rayburn Bldg
Washington, DC 20515

Senate Subcommittee on Patents, Trademarks and Copyrights
United States Senate
Washington, DC 20510

(These committees have received lots of mail already; let’s give them even more.)

Express your opinion! You can make a difference.

14 Using and Porting GNU CC

Chapter 2: GNU CC Command Options 15

2 GNU CC Command Options

When you invoke GNU CC, it normally does preprocessing, compilation, assembly and linking.

The “overall options” allow you to stop this process at an intermediate stage. For example, the ‘-c’

option says not to run the linker. Then the output consists of object files output by the assembler.

Other options are passed on to one stage of processing. Some options control the preprocessor

and others the compiler itself. Yet other options control the assembler and linker; most of these

are not documented here, since you rarely need to use any of them.

The gcc program accepts options and file names as operands. Many options have multiletter

names; therefore multiple single-letter options may not be grouped: ‘-dr’ is very different from

‘-d -r’.

You can mix options and other arguments. For the most part, the order you use doesn’t matter.

Order does matter when you use several options of the same kind; for example, if you specify ‘-L’

more than once, the directories are searched in the order specified.

Many options have long names starting with ‘-f’ or with ‘-W’—for example, ‘-fforce-mem’,

‘-fstrength-reduce’, ‘-Wformat’ and so on. Most of these have both positive and negative forms;

the negative form of ‘-ffoo’ would be ‘-fno-foo’. This manual documents only one of these two

forms, whichever one is not the default.

2.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following sections.

Overall Options

See Section 2.2 [Options Controlling the Kind of Output], page 19.

-c -S -E -o file -pipe -v -x language

Language Options

See Section 2.3 [Options Controlling Dialect], page 20.

-ansi -fcond-mismatch -fno-asm -fno-builtin
-fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char -fwritable-strings
-traditional -traditional-cpp -trigraphs
-fall-virtual -fdollars-in-identifiers -fenum-int-equiv

16 Using and Porting GNU CC

-fno-strict-prototype -fthis-is-variable

Warning Options

See Section 2.4 [Options to Request or Suppress Warnings], page 24.

-fsyntax-only -pedantic -pedantic-errors
-w -W -Wall -Waggregate-return
-Wcast-align -Wcast-qual -Wcomment -Wconversion -Werror
-Wformat -Wid-clash-len -Wenum-clash -Wimplicit -Wimport
-Winline -Wmissing-prototypes -Wnested-externs -Wparentheses
-Wpointer-arith -Wredundant-decls -Wreturn-type -Wshadow
-Wstrict-prototypes -Wswitch -Wtraditional -Wtrigraphs
-Wuninitialized -Wunused -Wwrite-strings -Wchar-subscripts

Debugging Options

See Section 2.5 [Options for Debugging Your Program or GCC], page 29.

-a -dletters -fpretend-float
-g -glevel -ggdb -gdwarf -gdwarf+
-gstabs -gstabs+ -gcoff -gxcoff -gxcoff+
-p -pg -save-temps

Optimization Options

See Section 2.6 [Options that Control Optimization], page 32.

-fcaller-saves -fcse-follow-jumps -fcse-skip-blocks
-fdelayed-branch -fexpensive-optimizations -ffast-math
-ffloat-store -fforce-addr -fforce-mem
-finline-functions -fkeep-inline-functions -fno-defer-pop
-fno-function-cse -fno-inline -fno-peephole -fomit-frame-pointer
-frerun-cse-after-loop -fschedule-insns -fschedule-insns2
-fstrength-reduce -fthread-jumps
-funroll-all-loops -funroll-loops
-felide-constructors -fmemoize-lookups -fno-default-inline
-O -O2

Preprocessor Options

See Section 2.7 [Options Controlling the Preprocessor], page 37.

-Aassertion -C -dD -dM -dN
-Dmacro[=defn] -E -H
-include file -imacros file
-M -MD -MM -MMD -nostdinc -P -trigraphs -Umacro

Assembler Option

See Section 2.8 [Passing Options to the Assembler], page 39.

-Wa,option

Linker Options

See Section 2.9 [Options for Linking], page 39.

object-file-name
-llibrary -nostdlib

Chapter 2: GNU CC Command Options 17

-static -shared -symbolic
-Xlinker option
-u symbol

Directory Options

See Section 2.10 [Options for Directory Search], page 41.

-Bprefix -Idir -I- -Ldir

Target Options

See Section 2.11 [Target Machine and Compiler Version], page 42.

-b machine -V version

Machine Dependent Options

See Section 2.12 [Hardware Models and Configurations], page 44.

M680x0 Options
-m68000 -m68020 -m68020-40 -m68030 -m68040 -m68881 -mbitfield
-mc68000 -mc68020 -mfpa -mnobitfield -mrtd -mshort -msoft-float

VAX Options
-mg -mgnu -munix

SPARC Options
-mforce-align -mno-epilogue

Convex Options
-margcount -mc1 -mc2 -mnoargcount

AMD29K Options
-m29000 -m29050 -mbw -mdw -mkernel-registers -mlarge
-mnbw -mnodw -msmall -mstack-check -muser-registers

M88K Options
-m88000 -m88100 -m88110 -mbig-pic -mcheck-zero-division
-mhandle-large-shift -midentify-revision
-mno-check-zero-division -mno-ocs-debug-info
-mno-ocs-frame-position -mno-optimize-arg-area -mno-underscores
-mocs-debug-info -mocs-frame-position -moptimize-arg-area
-mshort-data-num -msvr3 -msvr4 -mtrap-large-shift
-muse-div-instruction -mversion-03.00 -mwarn-passed-structs

RS/6000 Options
-mfp-in-toc -mno-fop-in-toc

RT Options
-mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs
-mfull-fp-blocks -mhc-struct-return -min-line-mul
-mminimum-fp-blocks -mnohc-struct-return

MIPS Options

18 Using and Porting GNU CC

-mcpu=cpu type -mips2 -mips3 -mint64 -mlong64 -mlonglong128
-mmips-as -mgas -mrnames -mno-rnames -mgpopt -mno-gpopt -mstats
-mno-stats -mmemcpy -mno-memcpy -mno-mips-tfile -mmips-tfile
-msoft-float -mhard-float -mabicalls -mno-abicalls -mhalf-pic
-mno-half-pic -G num -nocpp

i386 Options
-m486 -mno-486 -msoft-float -msvr3-shlib -mieee-fp
-mno-fp-ret-in-387

HPPA Options
-mno-bss
-mpa-risc-1-0
-mpa-risc-1-1
-mkernel
-mshared-libs
-mno-shared-libs
-mlong-calls

Intel 960 Options
-mcpu type
-mnumerics -msoft-float
-mcode-align -mno-code-align
-mleaf-procedures -mno-leaf-procedures
-mtail-call -mno-tail-call
-mcomplex-addr -mno-complex-addr
-mclean-linkage -mno-clean-linkage
-mic-compat -mic2.0-compat -mic3.0-compat
-masm-compat -mintel-asm
-mstrict-align -mno-strict-align
-mold-align -mno-old-align

DEC Alpha Options
-mfp-regs -mno-fp-regs -mno-soft-float -msoft-float

System V Options
-G -Qy -Qn -YP,paths -Ym,dir

Code Generation Options

See Section 2.13 [Options for Code Generation Conventions], page 57.

-fcall-saved-reg -fcall-used-reg -ffixed-reg
-finhibit-size-directive -fnonnull-objects -fno-common
-fno-ident -fno-gnu-linker -fpcc-struct-return -fpic -fPIC
-fshared-data -fshort-enums -fshort-double -fvolatile
-fverbose-asm

Chapter 2: GNU CC Command Options 19

2.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly and

linking, always in that order. The first three stages apply to an individual source file, and end

by producing an object file; linking combines all the object files (those newly compiled, and those

specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:

file.c C source code which must be preprocessed.

file.i C source code which should not be preprocessed.

file.ii C++ source code which should not be preprocessed.

file.m Objective-C source code. Note that you must link with the library ‘libobjc.a’ to

make an Objective-C program work.

file.h C header file (not to be compiled or linked).

file.cc

file.cxx

file.C C++ source code which must be preprocessed.

file.s Assembler code.

file.S Assembler code which must be preprocessed.

other An object file to be fed straight into linking. Any file name with no recognized suffix

is treated this way.

You can specify the input language explicitly with the ‘-x’ option:

-x language

Specify explicitly the language for the following input files (rather than choosing a de-

fault based on the file name suffix). This option applies to all following input files until

the next ‘-x’ option. Possible values of language are ‘c’, ‘objective-c’, ‘c-header’,

‘c++’, ‘cpp-output’, ‘assembler’, and ‘assembler-with-cpp’.

-x none Turn off any specification of a language, so that subsequent files are handled according

to their file name suffixes (as they are if ‘-x’ has not been used at all).

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes) to tell

gcc where to start, and one of the options ‘-c’, ‘-S’, or ‘-E’ to say where gcc is to stop. Note that

some combinations (for example, ‘-x cpp-output -E’ instruct gcc to do nothing at all.

20 Using and Porting GNU CC

-c Compile or assemble the source files, but do not link. The linking stage simply is not

done. The ultimate output is in the form of an object file for each source file.

By default, the object file name for a source file is made by replacing the suffix ‘.c’,

‘.i’, ‘.s’, etc., with ‘.o’.

Unrecognized input files, not requiring compilation or assembly, are ignored.

-S Stop after the stage of compilation proper; do not assemble. The output is in the form

of an assembler code file for each non-assembler input file specified.

By default, the assembler file name for a source file is made by replacing the suffix ‘.c’,

‘.i’, etc., with ‘.s’.

Input files that don’t require compilation are ignored.

-E Stop after the preprocessing stage; do not run the compiler proper. The output is in

the form of preprocessed source code, which is sent to the standard output.

Input files which don’t require preprocessing are ignored.

-o file Place output in file file. This applies regardless to whatever sort of output is being pro-

duced, whether it be an executable file, an object file, an assembler file or preprocessed

C code.

Since only one output file can be specified, it does not make sense to use ‘-o’ when

compiling more than one input file, unless you are producing an executable file as

output.

If ‘-o’ is not specified, the default is to put an executable file in ‘a.out’, the object file

for ‘source.suffix’ in ‘source.o’, its assembler file in ‘source.s’, and all preprocessed C

source on standard output.

-v Print (on standard error output) the commands executed to run the stages of com-

pilation. Also print the version number of the compiler driver program and of the

preprocessor and the compiler proper.

-pipe Use pipes rather than temporary files for communication between the various stages of

compilation. This fails to work on some systems where the assembler is unable to read

from a pipe; but the GNU assembler has no trouble.

2.3 Options Controlling Dialect

The following options control the dialect of C or C++ that the compiler accepts:

-ansi Support all ANSI standard C programs.

This turns off certain features of GNU C that are incompatible with ANSI C, such as

the asm, inline and typeof keywords, and predefined macros such as unix and vax

Chapter 2: GNU CC Command Options 21

that identify the type of system you are using. It also enables the undesirable and

rarely used ANSI trigraph feature, and disallows ‘$’ as part of identifiers.

The alternate keywords __asm__, __extension__, __inline__ and __typeof__ con-

tinue to work despite ‘-ansi’. You would not want to use them in an ANSI C program,

of course, but it useful to put them in header files that might be included in compila-

tions done with ‘-ansi’. Alternate predefined macros such as __unix__ and __vax__

are also available, with or without ‘-ansi’.

The ‘-ansi’ option does not cause non-ANSI programs to be rejected gratuitously. For

that, ‘-pedantic’ is required in addition to ‘-ansi’. See Section 2.4 [Warning Options],

page 24.

The macro __STRICT_ANSI__ is predefined when the ‘-ansi’ option is used. Some

header files may notice this macro and refrain from declaring certain functions or defin-

ing certain macros that the ANSI standard doesn’t call for; this is to avoid interfering

with any programs that might use these names for other things.

The functions alloca, abort, exit, and _exit are not builtin functions when ‘-ansi’

is used.

-fall-virtual

Treat certain member functions as virtual, implicitly (C++ only). This applies to all

member functions declared in the same class with a “method-call” operator method

(except for constructor functions and new or delete member operators). In effect, all

of these methods become “implicitly virtual.”

This does not mean that all calls to these methods will be made through the internal

table of virtual functions. There are some circumstances under which it is obvious that

a call to a given virtual function can be made directly, and in these cases the calls still

go direct.

The effect of making all methods of a class with a declared ‘operator->()()’ implicitly

virtual using ‘-fall-virtual’ extends also to all non-constructor methods of any class

derived from such a class.

-fdollars-in-identifiers

Permit the use of ‘$’ in identifiers (C++ only). You can also use ‘-fno-dollars-in-identifiers’

to explicitly prohibit use of ‘$’. (GNU C++ allows ‘$’ by default on some target systems

but not others.)

-fenum-int-equiv

Permit implicit conversion of int to enumeration types (C++ only). Normally GNU

C++ allows conversion of enum to int, but not the other way around.

-fno-asm Do not recognize asm, inline or typeof as a keyword. These words may then be used

as identifiers. You can use __asm__, __inline__ and __typeof__ instead. ‘-ansi’

implies ‘-fno-asm’.

22 Using and Porting GNU CC

-fno-builtin

Don’t recognize built-in functions that do not begin with two leading underscores.

Currently, the functions affected include _exit, abort, abs, alloca, cos, exit, fabs,

labs, memcmp, memcpy, sin, sqrt, strcmp, strcpy, and strlen.

The ‘-ansi’ option prevents alloca and _exit from being builtin functions.

-fno-strict-prototype

Treat a function declaration with no arguments, such as ‘int foo ();’, as C would

treat it—as saying nothing about the number of arguments or their types (C++ only).

Normally, such a declaration in C++ means that the function foo takes no arguments.

-fthis-is-variable

Permit assignment to this (C++ only). The incorporation of user-defined free store

management into C++ has made assignment to ‘this’ an anachronism. Therefore, by

default it is invalid to assign to this within a class member function. However, for

backwards compatibility, you can make it valid with ‘-fthis-is-variable’.

-trigraphs

Support ANSI C trigraphs. You don’t want to know about this brain-damage. The

‘-ansi’ option implies ‘-trigraphs’.

-traditional

Attempt to support some aspects of traditional C compilers. Specifically:

• All extern declarations take effect globally even if they are written inside of a

function definition. This includes implicit declarations of functions.

• The keywords typeof, inline, signed, const and volatile are not recognized.

(You can still use the alternative keywords such as __typeof__, __inline__, and

so on.)

• Comparisons between pointers and integers are always allowed.

• Integer types unsigned short and unsigned char promote to unsigned int.

• Out-of-range floating point literals are not an error.

• String “constants” are not necessarily constant; they are stored in writable space,

and identical looking constants are allocated separately. (This is the same as the

effect of ‘-fwritable-strings’.)

• All automatic variables not declared register are preserved by longjmp. Ordi-

narily, GNU C follows ANSI C: automatic variables not declared volatile may

be clobbered.

• In the preprocessor, comments convert to nothing at all, rather than to a space.

This allows traditional token concatenation.

• In the preprocessor, macro arguments are recognized within string constants in a

macro definition (and their values are stringified, though without additional quote

Chapter 2: GNU CC Command Options 23

marks, when they appear in such a context). The preprocessor always considers a

string constant to end at a newline.

• The predefined macro __STDC__ is not defined when you use ‘-traditional’,

but __GNUC__ is (since the GNU extensions which __GNUC__ indicates are not

affected by ‘-traditional’). If you need to write header files that work differently

depending on whether ‘-traditional’ is in use, by testing both of these predefined

macros you can distinguish four situations: GNU C, traditional GNU C, other

ANSI C compilers, and other old C compilers.

You may wish to use ‘-fno-builtin’ as well as ‘-traditional’ if your program uses

names that are normally GNU C builtin functions for other purposes of its own.

-traditional-cpp

Attempt to support some aspects of traditional C preprocessors. This includes the

last three items in the table immediately above, but none of the other effects of

‘-traditional’.

-fcond-mismatch

Allow conditional expressions with mismatched types in the second and third argu-

ments. The value of such an expression is void.

-funsigned-char

Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like unsigned

char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char when

it depends on the signedness of an object. But many programs have been written to

use plain char and expect it to be signed, or expect it to be unsigned, depending on

the machines they were written for. This option, and its inverse, let you make such a

program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned char,

even though its behavior is always just like one of those two.

-fsigned-char

Let the type char be signed, like signed char.

Note that this is equivalent to ‘-fno-unsigned-char’, which is the negative form of

‘-funsigned-char’. Likewise, ‘-fno-signed-char’ is equivalent to ‘-funsigned-char’.

24 Using and Porting GNU CC

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields

These options control whether a bitfield is signed or unsigned, when the declaration

does not use either signed or unsigned. By default, such a bitfield is signed, because

this is consistent: the basic integer types such as int are signed types.

However, when ‘-traditional’ is used, bitfields are all unsigned no matter what.

-fwritable-strings

Store string constants in the writable data segment and don’t uniquize them. This is

for compatibility with old programs which assume they can write into string constants.

‘-traditional’ also has this effect.

Writing into string constants is a very bad idea; “constants” should be constant.

2.4 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erroneous

but which are risky or suggest there may have been an error.

You can request many specific warnings with options beginning ‘-W’, for example ‘-Wimplicit’

to request warnings on implicit declarations. Each of these specific warning options also has a

negative form beginning ‘-Wno-’ to turn off warnings; for example, ‘-Wno-implicit’. This manual

lists only one of the two forms, whichever is not the default.

These options control the amount and kinds of warnings produced by GNU CC:

-fsyntax-only

Check the code for syntax errors, but don’t emit any output.

-w Inhibit all warning messages.

-Wno-import

Inhibit warning messages about the use of ‘#import’.

-pedantic

Issue all the warnings demanded by strict ANSI standard C; reject all programs that

use forbidden extensions.

Valid ANSI standard C programs should compile properly with or without this option

(though a rare few will require ‘-ansi’). However, without this option, certain GNU

Chapter 2: GNU CC Command Options 25

extensions and traditional C features are supported as well. With this option, they are

rejected.

‘-pedantic’ does not cause warning messages for use of the alternate keywords whose

names begin and end with ‘__’. Pedantic warnings are also disabled in the expression

that follows __extension__. However, only system header files should use these escape

routes; application programs should avoid them. See Section 4.30 [Alternate Keywords],

page 121.

This option is not intended to be useful; it exists only to satisfy pedants who would

otherwise claim that GNU CC fails to support the ANSI standard.

Some users try to use ‘-pedantic’ to check programs for strict ANSI C conformance.

They soon find that it does not do quite what they want: it finds some non-ANSI

practices, but not all—only those for which ANSI C requires a diagnostic.

A feature to report any failure to conform to ANSI C might be useful in some in-

stances, but would require considerable additional work and would be quite different

from ‘-pedantic’. We recommend, rather, that users take advantage of the extensions

of GNU C and disregard the limitations of other compilers. Aside from certain super-

computers and obsolete small machines, there is less and less reason ever to use any

other C compiler other than for bootstrapping GNU CC.

-pedantic-errors

Like ‘-pedantic’, except that errors are produced rather than warnings.

-W Print extra warning messages for these events:

• A nonvolatile automatic variable might be changed by a call to longjmp. These

warnings as well are possible only in optimizing compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp will be

called; in fact, a signal handler could call it at any point in the code. As a result,

you may get a warning even when there is in fact no problem because longjmp

cannot in fact be called at the place which would cause a problem.

• A function can return either with or without a value. (Falling off the end of the

function body is considered returning without a value.) For example, this function

would evoke such a warning:

foo (a)
{
if (a > 0)

return a;
}

• An expression-statement contains no side effects.

• An unsigned value is compared against zero with ‘>’ or ‘<=’.

• A comparison like ‘x<=y<=z’ appears; this is equivalent to ‘(x<=y ? 1 : 0) <= z’,

which is a different interpretation from that of ordinary mathematical notation.

26 Using and Porting GNU CC

• Storage-class specifiers like static are not the first things in a declaration. Ac-

cording to the C Standard, this usage is obsolescent.

• An aggregate has a partly bracketed initializer. For example, the following code

would evoke such a warning, because braces are missing around the initializer for

x.h:

struct s { int f, g; };
struct t { struct s h; int i; };
struct t x = { 1, 2, 3 };

-Wenum-clash

Warn about conversion between different enumeration types (C++ only).

-Wimplicit

Warn whenever a function or parameter is implicitly declared.

-Wreturn-type

Warn whenever a function is defined with a return-type that defaults to int. Also warn

about any return statement with no return-value in a function whose return-type is

not void.

-Wunused Warn whenever a local variable is unused aside from its declaration, whenever a function

is declared static but never defined, and whenever a statement computes a result that

is explicitly not used.

If you want to prevent a warning for a particular variable, you can use this macro:

#define USE(var) \
static void * use_##var = (&use_##var, (void *) &var)

USE (string);

-Wswitch Warn whenever a switch statement has an index of enumeral type and lacks a case

for one or more of the named codes of that enumeration. (The presence of a default

label prevents this warning.) case labels outside the enumeration range also provoke

warnings when this option is used.

-Wcomment

Warn whenever a comment-start sequence ‘/*’ appears in a comment.

-Wtrigraphs

Warn if any trigraphs are encountered (assuming they are enabled).

-Wformat Check calls to printf and scanf, etc., to make sure that the arguments supplied have

types appropriate to the format string specified.

-Wchar-subscripts

Warn if an array subscript has type char. This is a common cause of error, as pro-

grammers often forget that this type is signed on some machines.

Chapter 2: GNU CC Command Options 27

-Wuninitialized

An automatic variable is used without first being initialized.

These warnings are possible only in optimizing compilation, because they require data

flow information that is computed only when optimizing. If you don’t specify ‘-O’, you

simply won’t get these warnings.

These warnings occur only for variables that are candidates for register allocation.

Therefore, they do not occur for a variable that is declared volatile, or whose address

is taken, or whose size is other than 1, 2, 4 or 8 bytes. Also, they do not occur for

structures, unions or arrays, even when they are in registers.

Note that there may be no warning about a variable that is used only to compute a

value that itself is never used, because such computations may be deleted by data flow

analysis before the warnings are printed.

These warnings are made optional because GNU CC is not smart enough to see all the

reasons why the code might be correct despite appearing to have an error. Here is one

example of how this can happen:

{
int x;
switch (y)

{
case 1: x = 1;
break;

case 2: x = 4;
break;

case 3: x = 5;
}

foo (x);
}

If the value of y is always 1, 2 or 3, then x is always initialized, but GNU CC doesn’t

know this. Here is another common case:

{
int save_y;
if (change_y) save_y = y, y = new_y;
. . .

if (change_y) y = save_y;
}

This has no bug because save_y is used only if it is set.

Some spurious warnings can be avoided if you declare as volatile all the functions

you use that never return. See Section 4.20 [Function Attributes], page 105.

-Wparentheses

Warn if parentheses are omitted in certain contexts.

28 Using and Porting GNU CC

-Wall All of the above ‘-W’ options combined. These are all the options which pertain to usage

that we recommend avoiding and that we believe is easy to avoid, even in conjunction

with macros.

The remaining ‘-W. . .’ options are not implied by ‘-Wall’ because they warn about constructions

that we consider reasonable to use, on occasion, in clean programs.

-Wtraditional

Warn about certain constructs that behave differently in traditional and ANSI C.

• Macro arguments occurring within string constants in the macro body. These

would substitute the argument in traditional C, but are part of the constant in

ANSI C.

• A function declared external in one block and then used after the end of the block.

• A switch statement has an operand of type long.

-Wshadow Warn whenever a local variable shadows another local variable.

-Wid-clash-len

Warn whenever two distinct identifiers match in the first len characters. This may

help you prepare a program that will compile with certain obsolete, brain-damaged

compilers.

-Wpointer-arith

Warn about anything that depends on the “size of” a function type or of void. GNU

C assigns these types a size of 1, for convenience in calculations with void * pointers

and pointers to functions.

-Wcast-qual

Warn whenever a pointer is cast so as to remove a type qualifier from the target type.

For example, warn if a const char * is cast to an ordinary char *.

-Wcast-align

Warn whenever a pointer is cast such that the required alignment of the target is

increased. For example, warn if a char * is cast to an int * on machines where integers

can only be accessed at two- or four-byte boundaries.

-Wwrite-strings

Give string constants the type const char[length] so that copying the address of one

into a non-const char * pointer will get a warning. These warnings will help you find

at compile time code that can try to write into a string constant, but only if you have

been very careful about using const in declarations and prototypes. Otherwise, it will

just be a nuisance; this is why we did not make ‘-Wall’ request these warnings.

Chapter 2: GNU CC Command Options 29

-Wconversion

Warn if a prototype causes a type conversion that is different from what would happen

to the same argument in the absence of a prototype. This includes conversions of fixed

point to floating and vice versa, and conversions changing the width or signedness of a

fixed point argument except when the same as the default promotion.

-Waggregate-return

Warn if any functions that return structures or unions are defined or called. (In lan-

guages where you can return an array, this also elicits a warning.)

-Wstrict-prototypes

Warn if a function is declared or defined without specifying the argument types. (An

old-style function definition is permitted without a warning if preceded by a declaration

which specifies the argument types.)

-Wmissing-prototypes

Warn if a global function is defined without a previous prototype declaration. This

warning is issued even if the definition itself provides a prototype. The aim is to detect

global functions that fail to be declared in header files.

-Wredundant-decls

Warn if anything is declared more than once in the same scope, even in cases where

multiple declaration is valid and changes nothing.

-Wnested-externs

Warn if an extern declaration is encountered within an function.

-Winline Warn if a function can not be inlined, and either it was declared as inline, or else the

‘-finline-functions’ option was given.

-Werror Make all warnings into errors.

2.5 Options for Debugging Your Program or GNU CC

GNU CC has various special options that are used for debugging either your program or GCC:

-g Produce debugging information in the operating system’s native format (stabs, COFF,

XCOFF, or DWARF). GDB can work with this debugging information.

On most systems that use stabs format, ‘-g’ enables use of extra debugging information

that only GDB can use; this extra information makes debugging work better in GDB

but will probably make other debuggers crash or refuse to read the program. If you

want to control for certain whether to generate the extra information, use ‘-gstabs+’,

‘-gstabs’, ‘-gxcoff+’, ‘-gxcoff’, ‘-gdwarf+’, or ‘-gdwarf’ (see below).

30 Using and Porting GNU CC

Unlike most other C compilers, GNU CC allows you to use ‘-g’ with ‘-O’. The shortcuts

taken by optimized code may occasionally produce surprising results: some variables

you declared may not exist at all; flow of control may briefly move where you did not

expect it; some statements may not be executed because they compute constant results

or their values were already at hand; some statements may execute in different places

because they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it reasonable

to use the optimizer for programs that might have bugs.

The following options are useful when GNU CC is generated with the capability for

more than one debugging format.

-ggdb Produce debugging information in the native format (if that is supported), including

GDB extensions if at all possible.

-gstabs Produce debugging information in stabs format (if that is supported), without GDB

extensions. This is the format used by DBX on most BSD systems.

-gstabs+ Produce debugging information in stabs format (if that is supported), using GNU

extensions understood only by the GNU debugger (GDB). The use of these extensions

is likely to make other debuggers crash or refuse to read the program.

-gcoff Produce debugging information in COFF format (if that is supported). This is the

format used by SDB on most System V systems prior to System V Release 4.

-gxcoff Produce debugging information in XCOFF format (if that is supported). This is the

format used by the DBX debugger on IBM RS/6000 systems.

-gxcoff+ Produce debugging information in XCOFF format (if that is supported), using GNU

extensions understood only by the GNU debugger (GDB). The use of these extensions

is likely to make other debuggers crash or refuse to read the program.

-gdwarf Produce debugging information in DWARF format (if that is supported). This is the

format used by SDB on most System V Release 4 systems.

-gdwarf+ Produce debugging information in DWARF format (if that is supported), using GNU

extensions understood only by the GNU debugger (GDB). The use of these extensions

is likely to make other debuggers crash or refuse to read the program.

-glevel

-ggdblevel

-gstabslevel

-gcofflevel

-gxcofflevel

-gdwarflevel

Request debugging information and also use level to specify how much information.

The default level is 2.

Chapter 2: GNU CC Command Options 31

Level 1 produces minimal information, enough for making backtraces in parts of the

program that you don’t plan to debug. This includes descriptions of functions and

external variables, but no information about local variables and no line numbers.

Level 3 includes extra information, such as all the macro definitions present in the

program. Some debuggers support macro expansion when you use ‘-g3’.

-p Generate extra code to write profile information suitable for the analysis program prof.

-pg Generate extra code to write profile information suitable for the analysis program

gprof.

-a Generate extra code to write profile information for basic blocks, which will record

the number of times each basic block is executed. This data could be analyzed by

a program like tcov. Note, however, that the format of the data is not what tcov

expects. Eventually GNU gprof should be extended to process this data.

-dletters Says to make debugging dumps during compilation at times specified by letters. This

is used for debugging the compiler. The file names for most of the dumps are made

by appending a word to the source file name (e.g. ‘foo.c.rtl’ or ‘foo.c.jump’). Here

are the possible letters for use in letters, and their meanings:

‘M’ Dump all macro definitions, at the end of preprocessing, and write no

output.

‘N’ Dump all macro names, at the end of preprocessing.

‘D’ Dump all macro definitions, at the end of preprocessing, in addition to

normal output.

‘y’ Dump debugging information during parsing, to standard error.

‘r’ Dump after RTL generation, to ‘file.rtl’.

‘x’ Just generate RTL for a function instead of compiling it. Usually used

with ‘r’.

‘j’ Dump after first jump optimization, to ‘file.jump’.

‘s’ Dump after CSE (including the jump optimization that sometimes follows

CSE), to ‘file.cse’.

‘L’ Dump after loop optimization, to ‘file.loop’.

‘t’ Dump after the second CSE pass (including the jump optimization that

sometimes follows CSE), to ‘file.cse2’.

‘f’ Dump after flow analysis, to ‘file.flow’.

‘c’ Dump after instruction combination, to ‘file.combine’.

‘S’ Dump after the first instruction scheduling pass, to ‘file.sched’.

‘l’ Dump after local register allocation, to

‘file.lreg’.

‘g’ Dump after global register allocation, to

‘file.greg’.

32 Using and Porting GNU CC

‘R’ Dump after the second instruction scheduling pass, to ‘file.sched2’.

‘J’ Dump after last jump optimization, to ‘file.jump2’.

‘d’ Dump after delayed branch scheduling, to ‘file.dbr’.

‘k’ Dump after conversion from registers to stack, to ‘file.stack’.

‘a’ Produce all the dumps listed above.

‘m’ Print statistics on memory usage, at the end of the run, to standard error.

‘p’ Annotate the assembler output with a comment indicating which pattern

and alternative was used.

-fpretend-float

When running a cross-compiler, pretend that the target machine uses the same floating

point format as the host machine. This causes incorrect output of the actual floating

constants, but the actual instruction sequence will probably be the same as GNU CC

would make when running on the target machine.

-save-temps

Store the usual “temporary” intermediate files permanently; place them in the current

directory and name them based on the source file. Thus, compiling ‘foo.c’ with ‘-c

-save-temps’ would produce files ‘foo.i’ and ‘foo.s’, as well as ‘foo.o’.

2.6 Options That Control Optimization

These options control various sorts of optimizations:

-O

-O1 Optimize. Optimizing compilation takes somewhat more time, and a lot more memory

for a large function.

Without ‘-O’, the compiler’s goal is to reduce the cost of compilation and to make

debugging produce the expected results. Statements are independent: if you stop the

program with a breakpoint between statements, you can then assign a new value to

any variable or change the program counter to any other statement in the function and

get exactly the results you would expect from the source code.

Without ‘-O’, only variables declared register are allocated in registers. The resulting

compiled code is a little worse than produced by PCC without ‘-O’.

With ‘-O’, the compiler tries to reduce code size and execution time.

When ‘-O’ is specified, ‘-fthread-jumps’ and ‘-fdelayed-branch’ are turned on. On

some machines other flags may also be turned on.

Chapter 2: GNU CC Command Options 33

-O2 Optimize even more. Nearly all supported optimizations that do not involve a space-

speed tradeoff are performed. As compared to ‘-O’, this option increases both compi-

lation time and the performance of the generated code.

‘-O2’ turns on all ‘-fflag’ options that enable more optimization, except for ‘-funroll-loops’,

‘-funroll-all-loops’ and ‘-fomit-frame-pointer’.

-O0 Do not optimize.

If you use multiple ‘-O’ options, with or without level numbers, the last such option is

the one that is effective.

Options of the form ‘-fflag’ specify machine-independent flags. Most flags have both positive

and negative forms; the negative form of ‘-ffoo’ would be ‘-fno-foo’. In the table below, only

one of the forms is listed—the one which is not the default. You can figure out the other form by

either removing ‘no-’ or adding it.

-ffloat-store

Do not store floating point variables in registers, and inhibit other options that might

change whether a floating point value is taken from a register or memory.

This option prevents undesirable excess precision on machines such as the 68000 where

the floating registers (of the 68881) keep more precision than a double is supposed to

have. For most programs, the excess precision does only good, but a few programs

rely on the precise definition of IEEE floating point. Use ‘-ffloat-store’ for such

programs.

-fno-defer-pop

Always pop the arguments to each function call as soon as that function returns. For

machines which must pop arguments after a function call, the compiler normally lets

arguments accumulate on the stack for several function calls and pops them all at once.

-fforce-mem

Force memory operands to be copied into registers before doing arithmetic on them.

This may produce better code by making all memory references potential common

subexpressions. When they are not common subexpressions, instruction combination

should eliminate the separate register-load. I am interested in hearing about the dif-

ference this makes.

-fforce-addr

Force memory address constants to be copied into registers before doing arithmetic on

them. This may produce better code just as ‘-fforce-mem’ may. I am interested in

hearing about the difference this makes.

34 Using and Porting GNU CC

-fomit-frame-pointer

Don’t keep the frame pointer in a register for functions that don’t need one. This

avoids the instructions to save, set up and restore frame pointers; it also makes an

extra register available in many functions. It also makes debugging impossible on

some machines.

On some machines, such as the Vax, this flag has no effect, because the standard calling

sequence automatically handles the frame pointer and nothing is saved by pretending

it doesn’t exist. The machine-description macro FRAME_POINTER_REQUIRED controls

whether a target machine supports this flag. See Section 14.5 [Registers], page 279.

-fno-inline

Don’t pay attention to the inline keyword. Normally this option is used to keep the

compiler from expanding any functions inline. Note that if you are not optimizing, no

functions can be expanded inline.

-finline-functions

Integrate all simple functions into their callers. The compiler heuristically decides

which functions are simple enough to be worth integrating in this way.

If all calls to a given function are integrated, and the function is declared static, then

the function is normally not output as assembler code in its own right.

-fkeep-inline-functions

Even if all calls to a given function are integrated, and the function is declared static,

nevertheless output a separate run-time callable version of the function.

-fno-default-inline

Don’t make member functions inline by default merely because they are defined inside

the class scope (C++ only).

-fno-function-cse

Do not put function addresses in registers; make each instruction that calls a constant

function contain the function’s address explicitly.

This option results in less efficient code, but some strange hacks that alter the assembler

output may be confused by the optimizations performed when this option is not used.

-ffast-math

This option allows GCC to violate some ANSI or IEEE rules/specifications in the

interest of optimizing code for speed. For example, it allows the compiler to assume

arguments to the sqrt function are non-negative numbers.

This option should never be turned on by any ‘-O’ option since it can result in incorrect

output for programs which depend on an exact implementation of IEEE or ANSI

rules/specifications for math functions.

Chapter 2: GNU CC Command Options 35

-felide-constructors

Elide constructors when this seems plausible (C++ only). With this option, GNU C++

initializes y directly from the call to foo without going through a temporary in the

following code:

A foo ();
A y = foo ();

Without this option, GNU C++ first initializes y by calling the appropriate constructor

for type A; then assigns the result of foo to a temporary; and, finally, replaces the

initial value of y with the temporary.

The default behavior (‘-fno-elide-constructors’) is specified by the draft ANSI C++

standard. If your program’s constructors have side effects, ‘-felide-constructors’

can change your program’s behavior, since some constructor calls may be omitted.

-fmemoize-lookups

-fsave-memoized

Use heuristics to compile faster (C++ only). These heuristics are not enabled by default,

since they are only effective for certain input files. Other input files compile more slowly.

The first time the compiler must build a call to a member function (or reference to a

data member), it must (1) determine whether the class implements member functions

of that name; (2) resolve which member function to call (which involves figuring out

what sorts of type conversions need to be made); and (3) check the visibility of the

member function to the caller. All of this adds up to slower compilation. Normally, the

second time a call is made to that member function (or reference to that data member),

it must go through the same lengthy process again. This means that code like this

cout << "This " << p << " has " << n << " legs.\n";

makes six passes through all three steps. By using a software cache, a “hit” significantly

reduces this cost. Unfortunately, using the cache introduces another layer of mecha-

nisms which must be implemented, and so incurs its own overhead. ‘-fmemoize-lookups’

enables the software cache.

Because access privileges (visibility) to members and member functions may differ

from one function context to the next, G++ may need to flush the cache. With the

‘-fmemoize-lookups’ flag, the cache is flushed after every function that is compiled.

The ‘-fsave-memoized’ flag enables the same software cache, but when the compiler

determines that the context of the last function compiled would yield the same access

privileges of the next function to compile, it preserves the cache. This is most helpful

when defining many member functions for the same class: with the exception of member

functions which are friends of other classes, each member function has exactly the same

access privileges as every other, and the cache need not be flushed.

36 Using and Porting GNU CC

The following options control specific optimizations. The ‘-O2’ option turns on all of these

optimizations except ‘-funroll-loops’ and ‘-funroll-all-loops’. The ‘-O’ option usually turns

on the ‘-fthread-jumps’ and ‘-fdelayed-branch’ options, but specific machines may change the

default optimizations.

You can use the following flags in the rare cases when “fine-tuning” of optimizations to be

performed is desired.

-fstrength-reduce

Perform the optimizations of loop strength reduction and elimination of iteration vari-

ables.

-fthread-jumps

Perform optimizations where we check to see if a jump branches to a location where

another comparison subsumed by the first is found. If so, the first branch is redirected

to either the destination of the second branch or a point immediately following it,

depending on whether the condition is known to be true or false.

-fcse-follow-jumps

In common subexpression elimination, scan through jump instructions when the target

of the jump is not reached by any other path. For example, when CSE encounters an

if statement with an else clause, CSE will follow the jump when the condition tested

is false.

-fcse-skip-blocks

This is similar to ‘-fcse-follow-jumps’, but causes CSE to follow jumps which con-

ditionally skip over blocks. When CSE encounters a simple if statement with no else

clause, ‘-fcse-skip-blocks’ causes CSE to follow the jump around the body of the

if.

-frerun-cse-after-loop

Re-run common subexpression elimination after loop optimizations has been performed.

-fexpensive-optimizations

Perform a number of minor optimizations that are relatively expensive.

-fdelayed-branch

If supported for the target machine, attempt to reorder instructions to exploit instruc-

tion slots available after delayed branch instructions.

-fschedule-insns

If supported for the target machine, attempt to reorder instructions to eliminate ex-

ecution stalls due to required data being unavailable. This helps machines that have

slow floating point or memory load instructions by allowing other instructions to be

issued until the result of the load or floating point instruction is required.

Chapter 2: GNU CC Command Options 37

-fschedule-insns2

Similar to ‘-fschedule-insns’, but requests an additional pass of instruction schedul-

ing after register allocation has been done. This is especially useful on machines with

a relatively small number of registers and where memory load instructions take more

than one cycle.

-fcaller-saves

Enable values to be allocated in registers that will be clobbered by function calls, by

emitting extra instructions to save and restore the registers around such calls. Such

allocation is done only when it seems to result in better code than would otherwise be

produced.

This option is enabled by default on certain machines, usually those which have no

call-preserved registers to use instead.

-funroll-loops

Perform the optimization of loop unrolling. This is only done for loops whose number

of iterations can be determined at compile time or run time. ‘-funroll-loop’ implies

‘-fstrength-reduce’ and ‘-frerun-cse-after-loop’.

-funroll-all-loops

Perform the optimization of loop unrolling. This is done for all loops and usually makes

programs run more slowly. ‘-funroll-all-loops’ implies ‘-fstrength-reduce’ and

‘-frerun-cse-after-loop’.

-fno-peephole

Disable any machine-specific peephole optimizations.

2.7 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual

compilation.

If you use the ‘-E’ option, nothing is done except preprocessing. Some of these options make

sense only together with ‘-E’ because they cause the preprocessor output to be unsuitable for actual

compilation.

-include file

Process file as input before processing the regular input file. In effect, the contents

of file are compiled first. Any ‘-D’ and ‘-U’ options on the command line are always

processed before ‘-include file’, regardless of the order in which they are written. All

38 Using and Porting GNU CC

the ‘-include’ and ‘-imacros’ options are processed in the order in which they are

written.

-imacros file

Process file as input, discarding the resulting output, before processing the regular input

file. Because the output generated from file is discarded, the only effect of ‘-imacros

file’ is to make the macros defined in file available for use in the main input.

Any ‘-D’ and ‘-U’ options on the command line are always processed before ‘-imacros

file’, regardless of the order in which they are written. All the ‘-include’ and

‘-imacros’ options are processed in the order in which they are written.

-nostdinc

Do not search the standard system directories for header files. Only the directories you

have specified with ‘-I’ options (and the current directory, if appropriate) are searched.

See Section 2.10 [Directory Options], page 41, for information on ‘-I’.

By using both ‘-nostdinc’ and ‘-I-’, you can limit the include-file search path to only

those directories you specify explicitly.

-nostdinc++

Do not search for header files in the C++-specific standard directories, but do still search

the other standard directories. (This option is used when building ‘libg++’.)

-undef Do not predefine any nonstandard macros. (Including architecture flags).

-E Run only the C preprocessor. Preprocess all the C source files specified and output the

results to standard output or to the specified output file.

-C Tell the preprocessor not to discard comments. Used with the ‘-E’ option.

-P Tell the preprocessor not to generate ‘#line’ commands. Used with the ‘-E’ option.

-M Tell the preprocessor to output a rule suitable for make describing the dependencies

of each object file. For each source file, the preprocessor outputs one make-rule whose

target is the object file name for that source file and whose dependencies are all the files

‘#include’d in it. This rule may be a single line or may be continued with ‘\’-newline

if it is long. The list of rules is printed on standard output instead of the preprocessed

C program.

‘-M’ implies ‘-E’.

Another way to specify output of a make rule is by setting the environment variable

DEPENDENCIES_OUTPUT (see Section 2.14 [Environment Variables], page 60).

-MM Like ‘-M’ but the output mentions only the user header files included with ‘#include

"file"’. System header files included with ‘#include <file>’ are omitted.

-MD Like ‘-M’ but the dependency information is written to files with names made by replac-

ing ‘.o’ with ‘.d’ at the end of the output file names. This is in addition to compiling

the input files as specified—‘-MD’ does not inhibit ordinary compilation the way ‘-M’

does.

Chapter 2: GNU CC Command Options 39

The Mach utility ‘md’ can be used to merge the ‘.d’ files into a single dependency file

suitable for using with the ‘make’ command.

-MMD Like ‘-MD’ except mention only user header files, not system header files.

-H Print the name of each header file used, in addition to other normal activities.

-Aquestion(answer)

Assert the answer answer for question, in case it is tested with a preprocessor con-

ditional such as ‘#if #question(answer)’. ‘-A-’ disables the standard assertions that

normally describe the target machine.

-Dmacro Define macro macro with the string ‘1’ as its definition.

-Dmacro=defn

Define macro macro as defn. All instances of ‘-D’ on the command line are processed

before any ‘-U’ options.

-Umacro Undefine macro macro. ‘-U’ options are evaluated after all ‘-D’ options, but before any

‘-include’ and ‘-imacros’ options.

-dM Tell the preprocessor to output only a list of the macro definitions that are in effect at

the end of preprocessing. Used with the ‘-E’ option.

-dD Tell the preprocessing to pass all macro definitions into the output, in their proper

sequence in the rest of the output.

-dN Like ‘-dD’ except that the macro arguments and contents are omitted. Only ‘#define

name’ is included in the output.

-trigraphs

Support ANSI C trigraphs. You don’t want to know about this brain-damage. The

‘-ansi’ option also has this effect.

2.8 Passing Options to the Assembler

‘-Wa,option’

Pass option as an option to the assembler. If option contains commas, it is split into

multiple options at the commas.

2.9 Options for Linking

These options come into play when the compiler links object files into an executable output file.

They are meaningless if the compiler is not doing a link step.

40 Using and Porting GNU CC

object-file-name

A file name that does not end in a special recognized suffix is considered to name

an object file or library. (Object files are distinguished from libraries by the linker

according to the file contents.) If linking is done, these object files are used as input to

the linker.

-c

-S

-E If any of these options is used, then the linker is not run, and object file names should

not be used as arguments. See Section 2.2 [Overall Options], page 19.

-llibrary Search the library named library when linking.

It makes a difference where in the command you write this option; the linker searches

processes libraries and object files in the order they are specified. Thus, ‘foo.o -lz

bar.o’ searches library ‘z’ after file ‘foo.o’ but before ‘bar.o’. If ‘bar.o’ refers to

functions in ‘z’, those functions may not be loaded.

The linker searches a standard list of directories for the library, which is actually a file

named ‘liblibrary.a’. The linker then uses this file as if it had been specified precisely

by name.

The directories searched include several standard system directories plus any that you

specify with ‘-L’.

Normally the files found this way are library files—archive files whose members are

object files. The linker handles an archive file by scanning through it for members

which define symbols that have so far been referenced but not defined. But if the

file that is found is an ordinary object file, it is linked in the usual fashion. The only

difference between using an ‘-l’ option and specifying a file name is that ‘-l’ surrounds

library with ‘lib’ and ‘.a’ and searches several directories.

-lobjc This special case of the ‘-l’ option is what you need to do when you link an Objective

C program.

-nostdlib

Don’t use the standard system libraries and startup files when linking. Only the files

you specify will be passed to the linker.

-static On systems that support dynamic linking, this prevents linking with the shared li-

braries. On other systems, this option has no effect.

-shared Produce a shared object which can then be linked with other objects to form an exe-

cutable. Only a few systems support this option.

-symbolic

Bind references to global symbols when building a shared object. Warn about any un-

resolved references (unless overridden by the link editor option ‘-Xlinker -z -Xlinker

defs’). Only a few systems support this option.

Chapter 2: GNU CC Command Options 41

-Xlinker option

Pass option as an option to the linker. You can use this to supply system-specific linker

options which GNU CC does not know how to recognize.

If you want to pass an option that takes an argument, you must use ‘-Xlinker’

twice, once for the option and once for the argument. For example, to pass ‘-assert

definitions’, you must write ‘-Xlinker -assert -Xlinker definitions’. It does

not work to write ‘-Xlinker "-assert definitions"’, because this passes the entire

string as a single argument, which is not what the linker expects.

-Wl,option

Pass option as an option to the linker. If option contains commas, it is split into

multiple options at the commas.

-u symbol Pretend the symbol symbol is undefined, to force linking of library modules to define

it. You can use ‘-u’ multiple times with different symbols to force loading of additional

library modules.

2.10 Options for Directory Search

These options specify directories to search for header files, for libraries and for parts of the

compiler:

-Idir Append directory dir to the list of directories searched for include files.

-I- Any directories you specify with ‘-I’ options before the ‘-I-’ option are searched only

for the case of ‘#include "file"’; they are not searched for ‘#include <file>’.

If additional directories are specified with ‘-I’ options after the ‘-I-’, these directories

are searched for all ‘#include’ directives. (Ordinarily all ‘-I’ directories are used this

way.)

In addition, the ‘-I-’ option inhibits the use of the current directory (where the current

input file came from) as the first search directory for ‘#include "file"’. There is no

way to override this effect of ‘-I-’. With ‘-I.’ you can specify searching the directory

which was current when the compiler was invoked. That is not exactly the same as

what the preprocessor does by default, but it is often satisfactory.

‘-I-’ does not inhibit the use of the standard system directories for header files. Thus,

‘-I-’ and ‘-nostdinc’ are independent.

-Ldir Add directory dir to the list of directories to be searched for ‘-l’.

-Bprefix This option specifies where to find the executables, libraries and data files of the com-

piler itself.

42 Using and Porting GNU CC

The compiler driver program runs one or more of the subprograms ‘cpp’, ‘cc1’, ‘as’

and ‘ld’. It tries prefix as a prefix for each program it tries to run, both with and

without ‘machine/version/’ (see Section 2.11 [Target Options], page 42).

For each subprogram to be run, the compiler driver first tries the ‘-B’ prefix, if any.

If that name is not found, or if ‘-B’ was not specified, the driver tries two standard

prefixes, which are ‘/usr/lib/gcc/’ and ‘/usr/local/lib/gcc-lib/’. If neither of

those results in a file name that is found, the unmodified program name is searched for

using the directories specified in your ‘PATH’ environment variable.

‘-B’ prefixes that effectively specify directory names also apply to libraries in the linker,

because the compiler translates these options into ‘-L’ options for the linker.

The run-time support file ‘libgcc.a’ can also be searched for using the ‘-B’ prefix, if

needed. If it is not found there, the two standard prefixes above are tried, and that is

all. The file is left out of the link if it is not found by those means.

Another way to specify a prefix much like the ‘-B’ prefix is to use the environment

variable GCC_EXEC_PREFIX. See Section 2.14 [Environment Variables], page 60.

2.11 Specifying Target Machine and Compiler Version

By default, GNU CC compiles code for the same type of machine that you are using. However,

it can also be installed as a cross-compiler, to compile for some other type of machine. In fact,

several different configurations of GNU CC, for different target machines, can be installed side by

side. Then you specify which one to use with the ‘-b’ option.

In addition, older and newer versions of GNU CC can be installed side by side. One of them

(probably the newest) will be the default, but you may sometimes wish to use another.

-b machine

The argument machine specifies the target machine for compilation. This is useful

when you have installed GNU CC as a cross-compiler.

The value to use for machine is the same as was specified as the machine type when

configuring GNU CC as a cross-compiler. For example, if a cross-compiler was con-

figured with ‘configure i386v’, meaning to compile for an 80386 running System V,

then you would specify ‘-b i386v’ to run that cross compiler.

When you do not specify ‘-b’, it normally means to compile for the same type of

machine that you are using.

Chapter 2: GNU CC Command Options 43

-V version The argument version specifies which version of GNU CC to run. This is useful when

multiple versions are installed. For example, version might be ‘2.0’, meaning to run

GNU CC version 2.0.

The default version, when you do not specify ‘-V’, is controlled by the way GNU CC

is installed. Normally, it will be a version that is recommended for general use.

The ‘-b’ and ‘-V’ options actually work by controlling part of the file name used for the ex-

ecutable files and libraries used for compilation. A given version of GNU CC, for a given target

machine, is normally kept in the directory ‘/usr/local/lib/gcc-lib/machine/version’.

It follows that sites can customize the effect of ‘-b’ or ‘-V’ either by changing the names of these

directories or adding alternate names (or symbolic links). Thus, if ‘/usr/local/lib/gcc-lib/80386’

is a link to ‘/usr/local/lib/gcc-lib/i386v’, then ‘-b 80386’ becomes an alias for ‘-b i386v’.

In one respect, the ‘-b’ or ‘-V’ do not completely change to a different compiler: the top-level

driver program gcc that you originally invoked continues to run and invoke the other executables

(preprocessor, compiler per se, assembler and linker) that do the real work. However, since no real

work is done in the driver program, it usually does not matter that the driver program in use is

not the one for the specified target and version.

The only way that the driver program depends on the target machine is in the parsing and

handling of special machine-specific options. However, this is controlled by a file which is found,

along with the other executables, in the directory for the specified version and target machine.

As a result, a single installed driver program adapts to any specified target machine and compiler

version.

The driver program executable does control one significant thing, however: the default version

and target machine. Therefore, you can install different instances of the driver program, compiled

for different targets or versions, under different names.

For example, if the driver for version 2.0 is installed as ogcc and that for version 2.1 is installed

as gcc, then the command gcc will use version 2.1 by default, while ogcc will use 2.0 by default.

However, you can choose either version with either command with the ‘-V’ option.

44 Using and Porting GNU CC

2.12 Specifying Hardware Models and Configurations

Earlier we discussed the standard option ‘-b’ which chooses among different installed compilers

for completely different target machines, such as Vax vs. 68000 vs. 80386.

In addition, each of these target machine types can have its own special options, starting with

‘-m’, to choose among various hardware models or configurations—for example, 68010 vs 68020,

floating coprocessor or none. A single installed version of the compiler can compile for any model

or configuration, according to the options specified.

Some configurations of the compiler also support additional special options, usually for compat-

ibility with other compilers on the same platform.

These options are defined by the macro TARGET_SWITCHES in the machine description. The

default for the options is also defined by that macro, which enables you to change the defaults.

2.12.1 M680x0 Options

These are the ‘-m’ options defined for the 68000 series. The default values for these options

depends on which style of 68000 was selected when the compiler was configured; the defaults for

the most common choices are given below.

-m68000

-mc68000 Generate output for a 68000. This is the default when the compiler is configured for

68000-based systems.

-m68020

-mc68020 Generate output for a 68020. This is the default when the compiler is configured for

68020-based systems.

-m68881 Generate output containing 68881 instructions for floating point. This is the default

for most 68020 systems unless ‘-nfp’ was specified when the compiler was configured.

-m68030 Generate output for a 68030. This is the default when the compiler is configured for

68030-based systems.

-m68040 Generate output for a 68040. This is the default when the compiler is configured for

68040-based systems.

Chapter 2: GNU CC Command Options 45

-m68020-40

Generate output for a 68040, without using any of the new instructions. This results

in code which can run relatively efficiently on either a 68020/68881 or a 68030 or a

68040.

-mfpa Generate output containing Sun FPA instructions for floating point.

-msoft-float

Generate output containing library calls for floating point. Warning: the requisite

libraries are not part of GNU CC. Normally the facilities of the machine’s usual C

compiler are used, but this can’t be done directly in cross-compilation. You must make

your own arrangements to provide suitable library functions for cross-compilation.

-mshort Consider type int to be 16 bits wide, like short int.

-mnobitfield

Do not use the bit-field instructions. ‘-m68000’ implies ‘-mnobitfield’.

-mbitfield

Do use the bit-field instructions. ‘-m68020’ implies ‘-mbitfield’. This is the default

if you use the unmodified sources configured for a 68020.

-mrtd Use a different function-calling convention, in which functions that take a fixed num-

ber of arguments return with the rtd instruction, which pops their arguments while

returning. This saves one instruction in the caller since there is no need to pop the

arguments there.

This calling convention is incompatible with the one normally used on Unix, so you

cannot use it if you need to call libraries compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that take variable numbers

of arguments (including printf); otherwise incorrect code will be generated for calls

to those functions.

In addition, seriously incorrect code will result if you call a function with too many

arguments. (Normally, extra arguments are harmlessly ignored.)

The rtd instruction is supported by the 68010 and 68020 processors, but not by the

68000.

2.12.2 VAX Options

These ‘-m’ options are defined for the Vax:

-munix Do not output certain jump instructions (aobleq and so on) that the Unix assembler

for the Vax cannot handle across long ranges.

46 Using and Porting GNU CC

-mgnu Do output those jump instructions, on the assumption that you will assemble with the

GNU assembler.

-mg Output code for g-format floating point numbers instead of d-format.

2.12.3 SPARC Options

These ‘-m’ switches are supported on the Sparc:

-mforce-align

Make sure all objects of type double are 8-byte aligned in memory and use double-word

instructions to reference them.

-mno-epilogue

Generate separate return instructions for return statements. This has both advantages

and disadvantages; I don’t recall what they are.

2.12.4 Convex Options

These ‘-m’ options are defined for the Convex:

-mc1 Generate output for a C1. This is the default when the compiler is configured for a C1.

-mc2 Generate output for a C2. This is the default when the compiler is configured for a C2.

-margcount

Generate code which puts an argument count in the word preceding each argument list.

Some nonportable Convex and Vax programs need this word. (Debuggers don’t, except

for functions with variable-length argument lists; this info is in the symbol table.)

-mnoargcount

Omit the argument count word. This is the default if you use the unmodified sources.

2.12.5 AMD29K Options

These ‘-m’ options are defined for the AMD Am29000:

-mdw Generate code that assumes the DW bit is set, i.e., that byte and halfword operations

are directly supported by the hardware. This is the default.

Chapter 2: GNU CC Command Options 47

-mnodw Generate code that assumes the DW bit is not set.

-mbw Generate code that assumes the system supports byte and halfword write operations.

This is the default.

-mnbw Generate code that assumes the systems does not support byte and halfword write

operations. ‘-mnbw’ implies ‘-mnodw’.

-msmall Use a small memory model that assumes that all function addresses are either within

a single 256 KB segment or at an absolute address of less than 256K. This allows the

call instruction to be used instead of a const, consth, calli sequence.

-mlarge Do not assume that the call instruction can be used; this is the default.

-m29050 Generate code for the Am29050.

-m29000 Generate code for the Am29000. This is the default.

-mkernel-registers

Generate references to registers gr64-gr95 instead of gr96-gr127. This option can be

used when compiling kernel code that wants a set of global registers disjoint from that

used by user-mode code.

Note that when this option is used, register names in ‘-f’ flags must use the normal,

user-mode, names.

-muser-registers

Use the normal set of global registers, gr96-gr127. This is the default.

-mstack-check

Insert a call to __msp_check after each stack adjustment. This is often used for kernel

code.

2.12.6 M88K Options

These ‘-m’ options are defined for Motorola 88K architectures:

-m88000 Generate code that works well on both the m88100 and the m88110.

-m88100 Generate code that works best for the m88100, but that also runs on the m88110.

-m88110 Generate code that works best for the m88110, and may not run on the m88100.

-midentify-revision

Include an ident directive in the assembler output recording the source file name,

compiler name and version, timestamp, and compilation flags used.

48 Using and Porting GNU CC

-mno-underscores

In assembler output, emit symbol names without adding an underscore character at

the beginning of each name. The default is to use an underscore as prefix on each

name.

-mocs-debug-info

-mno-ocs-debug-info

Include (or omit) additional debugging information (about registers used in each stack

frame) as specified in the 88open Object Compatibility Standard, “OCS”. This extra

information allows debugging of code that has had the frame pointer eliminated. The

default for DG/UX, SVr4, and Delta 88 SVr3.2 is to include this information; other

88k configurations omit this information by default.

-mocs-frame-position

When emitting COFF debugging information for automatic variables and parameters

stored on the stack, use the offset from the canonical frame address, which is the stack

pointer (register 31) on entry to the function. The DG/UX, SVr4, Delta88 SVr3.2, and

BCS configurations use ‘-mocs-frame-position’; other 88k configurations have the

default ‘-mno-ocs-frame-position’.

-mno-ocs-frame-position

When emitting COFF debugging information for automatic variables and parameters

stored on the stack, use the offset from the frame pointer register (register 30). When

this option is in effect, the frame pointer is not eliminated when debugging information

is selected by the -g switch.

-moptimize-arg-area

-mno-optimize-arg-area

Control how to store function arguments in stack frames. ‘-moptimize-arg-area’

saves space, but conflicts with the 88open specifications. ‘-mno-optimize-arg-area’

conforms to the 88open standards. By default GNU CC does not optimize the argument

area.

-mshort-data-num

Generate smaller data references by making them relative to r0, which allows loading

a value using a single instruction (rather than the usual two). You control which data

references are affected by specifying num with this option. For example, if you specify

‘-mshort-data-512’, then the data references affected are those involving displace-

ments of less than 512 bytes. ‘-mshort-data-num’ is not effective for num greater

than 64K.

-mserialize-volatile

-mno-serialize-volatile

Do, or don’t, generate code to guarantee sequential consistency of volatile memory

references.

Chapter 2: GNU CC Command Options 49

GNU CC always guarantees consistency by default, for the preferred processor sub-

model. How this is done depends on the submodel.

The m88100 processor does not reorder memory references and so always provides

sequential consistency. If you use ‘-m88100’, GNU CC does not generate any special

instructions for sequential consistency.

The order of memory references made by the m88110 processor does not always match

the order of the instructions requesting those references. In particular, a load in-

struction may execute before a preceding store instruction. Such reordering violates

sequential consistency of volatile memory references, when there are multiple proces-

sors. When you use ‘-m88000’ or ‘-m88110’, GNU CC generates special instructions

when appropriate, to force execution in the proper order.

The extra code generated to guarantee consistency may affect the performance of

your application. If you know that you can safely forgo this guarantee, you may use

‘-mno-serialize-volatile’.

If you use ‘-m88100’ but require sequential consistency when running on the m88110

processor, you should use ‘-mserialize-volatile’.

-msvr4

-msvr3 Turn on (‘-msvr4’) or off (‘-msvr3’) compiler extensions related to System V release 4

(SVr4). This controls the following:

1. Which variant of the assembler syntax to emit (which you can select independently

using ‘-mversion-03.00’).

2. ‘-msvr4’ makes the C preprocessor recognize ‘#pragma weak’ that is used on Sys-

tem V release 4.

3. ‘-msvr4’ makes GNU CC issue additional declaration directives used in SVr4.

‘-msvr3’ is the default for all m88K configurations except the SVr4 configuration.

-mversion-03.00

In the DG/UX configuration, there are two flavors of SVr4. This option modifies

‘-msvr4’ to select whether the hybrid-COFF or real-ELF flavor is used. All other

configurations ignore this option.

-mno-check-zero-division

-mcheck-zero-division

Early models of the 88K architecture had problems with division by zero; in particular,

many of them didn’t trap. Use these options to avoid including (or to include explicitly)

additional code to detect division by zero and signal an exception. All GNU CC

configurations for the 88K use ‘-mcheck-zero-division’ by default.

-muse-div-instruction

Do not emit code to check both the divisor and dividend when doing signed integer

division to see if either is negative, and adjust the signs so the divide is done using

50 Using and Porting GNU CC

non-negative numbers. Instead, rely on the operating system to calculate the correct

value when the div instruction traps. This results in different behavior when the most

negative number is divided by -1, but is useful when most or all signed integer divisions

are done with positive numbers.

-mtrap-large-shift

-mhandle-large-shift

Include code to detect bit-shifts of more than 31 bits; respectively, trap such shifts or

emit code to handle them properly. By default GNU CC makes no special provision

for large bit shifts.

-mwarn-passed-structs

Warn when a function passes a struct as an argument or result. Structure-passing

conventions have changed during the evolution of the C language, and are often the

source of portability problems. By default, GNU CC issues no such warning.

2.12.7 IBM RS/6000 Options

Only one pair of ‘-m’ options is defined for the IBM RS/6000:

-mfp-in-toc

-mno-fp-in-toc

Control whether or not floating-point constants go in the Table of Contents (TOC), a

table of all global variable and function addresses. By default GNU CC puts floating-

point constants there; if the TOC overflows, ‘-mno-fp-in-toc’ will reduce the size of

the TOC, which may avoid the overflow.

2.12.8 IBM RT Options

These ‘-m’ options are defined for the IBM RT PC:

-min-line-mul

Use an in-line code sequence for integer multiplies. This is the default.

-mcall-lib-mul

Call lmul$$ for integer multiples.

-mfull-fp-blocks

Generate full-size floating point data blocks, including the minimum amount of scratch

space recommended by IBM. This is the default.

Chapter 2: GNU CC Command Options 51

-mminimum-fp-blocks

Do not include extra scratch space in floating point data blocks. This results in smaller

code, but slower execution, since scratch space must be allocated dynamically.

-mfp-arg-in-fpregs

Use a calling sequence incompatible with the IBM calling convention in which float-

ing point arguments are passed in floating point registers. Note that varargs.h and

stdargs.h will not work with floating point operands if this option is specified.

-mfp-arg-in-gregs

Use the normal calling convention for floating point arguments. This is the default.

-mhc-struct-return

Return structures of more than one word in memory, rather than in a register. This pro-

vides compatibility with the MetaWare HighC (hc) compiler. Use ‘-fpcc-struct-return’

for compatibility with the Portable C Compiler (pcc).

-mnohc-struct-return

Return some structures of more than one word in registers, when convenient. This is the

default. For compatibility with the IBM-supplied compilers, use either ‘-fpcc-struct-return’

or ‘-mhc-struct-return’.

2.12.9 MIPS Options

These ‘-m’ options are defined for the MIPS family of computers:

-mcpu=cpu type

Assume the defaults for the machine type cpu type when scheduling instructions. The

default cpu type is ‘default’, which picks the longest cycles times for any of the

machines, in order that the code run at reasonable rates on all MIPS cpu’s. Other

choices for cpu type are ‘r2000’, ‘r3000’, ‘r4000’, and ‘r6000’. While picking a specific

cpu type will schedule things appropriately for that particular chip, the compiler will

not generate any code that does not meet level 1 of the MIPS ISA (instruction set

architecture) without the ‘-mips2’ or ‘-mips3’ switches being used.

-mips2 Issue instructions from level 2 of the MIPS ISA (branch likely, square root instructions).

The ‘-mcpu=r4000’ or ‘-mcpu=r6000’ switch must be used in conjunction with ‘-mips2’.

-mips3 Issue instructions from level 3 of the MIPS ISA (64 bit instructions). You must use

the ‘-mcpu=r4000’ switch along with ‘-mips3’.

-mint64

-mlong64

52 Using and Porting GNU CC

-mlonglong128

These options don’t work at present.

-mmips-as

Generate code for the MIPS assembler, and invoke ‘mips-tfile’ to add normal debug

information. This is the default for all platforms except for the OSF/1 reference plat-

form, using the OSF/rose object format. If the either of the ‘-gstabs’ or ‘-gstabs+’

switches are used, the ‘mips-tfile’ program will encapsulate the stabs within MIPS

ECOFF.

-mgas Generate code for the GNU assembler. This is the default on the OSF/1 reference

platform, using the OSF/rose object format.

-mrnames

-mno-rnames

The ‘-mrnames’ switch says to output code using the MIPS software names for the

registers, instead of the hardware names (ie, a0 instead of $4). The GNU assembler

does not support the ‘-mrnames’ switch, and the MIPS assembler will be instructed to

run the MIPS C preprocessor over the source file. The ‘-mno-rnames’ switch is default.

-mgpopt

-mno-gpopt

The ‘-mgpopt’ switch says to write all of the data declarations before the instructions

in the text section, this allows the MIPS assembler to generate one word memory

references instead of using two words for short global or static data items. This is on

by default if optimization is selected.

-mstats

-mno-stats

For each non-inline function processed, the ‘-mstats’ switch causes the compiler to

emit one line to the standard error file to print statistics about the program (number

of registers saved, stack size, etc.).

-mmemcpy

-mno-memcpy

The ‘-mmemcpy’ switch makes all block moves call the appropriate string function

(‘memcpy’ or ‘bcopy’) instead of possibly generating inline code.

-mmips-tfile

-mno-mips-tfile

The ‘-mno-mips-tfile’ switch causes the compiler not postprocess the object file with

the ‘mips-tfile’ program, after the MIPS assembler has generated it to add debug

support. If ‘mips-tfile’ is not run, then no local variables will be available to the

debugger. In addition, ‘stage2’ and ‘stage3’ objects will have the temporary file

names passed to the assembler embedded in the object file, which means the objects

Chapter 2: GNU CC Command Options 53

will not compare the same. The ‘-mno-mips-tfile’ switch should only be used when

there are bugs in the ‘mips-tfile’ program that prevents compilation.

-msoft-float

Generate output containing library calls for floating point. Warning: the requisite

libraries are not part of GNU CC. Normally the facilities of the machine’s usual C

compiler are used, but this can’t be done directly in cross-compilation. You must make

your own arrangements to provide suitable library functions for cross-compilation.

-mhard-float

Generate output containing floating point instructions. This is the default if you use

the unmodified sources.

-mfp64 Assume that the FR bit in the status word is on, and that there are 32 64-bit floating

point registers, instead of 32 32-bit floating point registers. You must also specify the

‘-mcpu=r4000’ and ‘-mips3’ switches.

-mfp32 Assume that there are 32 32-bit floating point registers. This is the default.

-mabicalls

-mno-abicalls

Emit the ‘.abicalls’, ‘.cpload’, and ‘.cprestore’ pseudo operations that some Sys-

tem V.4 ports use for position independent code.

-mhalf-pic

-mno-half-pic

Put pointers to extern references into the data section and load them up, rather than

put the references in the text section. These options do not work at present.

-G num Put global and static items less than or equal to num bytes into the small data or

bss sections instead of the normal data or bss section. This allows the assembler to

emit one word memory reference instructions based on the global pointer (gp or $28),

instead of the normal two words used. By default, num is 8 when the MIPS assembler

is used, and 0 when the GNU assembler is used. The ‘-G num’ switch is also passed

to the assembler and linker. All modules should be compiled with the same ‘-G num’

value.

-nocpp Tell the MIPS assembler to not run it’s preprocessor over user assembler files (with a

‘.s’ suffix) when assembling them.

These options are defined by the macro TARGET_SWITCHES in the machine description. The

default for the options is also defined by that macro, which enables you to change the defaults.

54 Using and Porting GNU CC

2.12.10 Intel 386 Options

These ‘-m’ options are defined for the i386 family of computers:

-m486

-mno-486 Control whether or not code is optimized for a 486 instead of an 386. Code generated

for an 486 will run on a 386 and vice versa.

-msoft-float

Generate output containing library calls for floating point. Warning: the requisite

libraries are not part of GNU CC. Normally the facilities of the machine’s usual C

compiler are used, but this can’t be done directly in cross-compilation. You must make

your own arrangements to provide suitable library functions for cross-compilation.

On machines where a function returns floating point results in the 80387 register stack,

some floating point opcodes may be emitted even if ‘-msoft-float’ is used.

-mno-fp-ret-in-387

Don’t use the FPU registers for return values of functions.

The usual calling convention has functions return values of types float and double in

an FPU register, even if there is no FPU. The idea is that the operating system should

emulate an FPU.

The option ‘-mno-fp-ret-in-387’ causes such values to be returned in ordinary CPU

registers instead.

2.12.11 HPPA Options

This ‘-m’ option is defined for the HPPA family of computers:

-mno-bss Disable the use of the BSS section. This may be necessary with older versions of

pa-gas. It is highly recommended that you pick up a new version of pa-gas from

jaguar.cs.utah.edu.

-mpa-risc-1-0

Generate code for a PA 1.0 processor.

-mpa-risc-1-1

Generate code for a PA 1.1 processor.

-mkernel Generate code which is suitable for use in kernels. Specifically, avoid add instructions

in which one of the arguments is the DP register; generate addil instructions instead.

This avoids a rather serious bug in the HP-UX linker.

Chapter 2: GNU CC Command Options 55

-mshared-libs

Generate code that can be linked against HP-UX shared libraries. This option is not

fully function yet, and is not on by default for any PA target.

-mno-shared-libs

Don’t generate code that will be linked against shared libraries. This is the default for

all PA targets.

-mlong-calls

Generate code which allows calls to functions greater than 256K away from the caller

when the caller and callee are in the same source file. Do not turn this option on unless

code refuses to link with "branch out of range errors" from the linker.

2.12.12 Intel 960 Options

These ‘-m’ options are defined for the Intel 960 implementations:

-mcpu type

Assume the defaults for the machine type cpu type for some of the other options,

including instruction scheduling, floating point support, and addressing modes. The

choices for cpu type are ‘ka’, ‘kb’, ‘mc’, ‘ca’, ‘cf’, ‘sa’, and ‘sb’. The default is ‘kb’.

-mnumerics

-msoft-float

The ‘-mnumerics’ option indicates that the processor does support floating-point in-

structions. The ‘-msoft-float’ option indicates that floating-point support should not

be assumed.

-mleaf-procedures

-mno-leaf-procedures

Do (or do not) attempt to alter leaf procedures to be callable with the bal instruction

as well as call. This will result in more efficient code for explicit calls when the bal

instruction can be substituted by the assembler or linker, but less efficient code in other

cases, such as calls via function pointers, or using a linker that doesn’t support this

optimization.

-mtail-call

-mno-tail-call

Do (or do not) make additional attempts (beyond those of the machine-independent

portions of the compiler) to optimize tail-recursive calls into branches. You may not

want to do this because the detection of cases where this is not valid is not totally

complete. The default is ‘-mno-tail-call’.

56 Using and Porting GNU CC

-mcomplex-addr

-mno-complex-addr

Assume (or do not assume) that the use of a complex addressing mode is a win

on this implementation of the i960. Complex addressing modes may not be worth-

while on the K-series, but they definitely are on the C-series. The default is currently

‘-mcomplex-addr’ for all processors except the CB and CC.

-mcode-align

-mno-code-align

Align code to 8-byte boundaries for faster fetching (or don’t bother). Currently turned

on by default for C-series implementations only.

-mic-compat

-mic2.0-compat

-mic3.0-compat

Enable compatibility with iC960 v2.0 or v3.0.

-masm-compat

-mintel-asm

Enable compatibility with the iC960 assembler.

-mstrict-align

-mno-strict-align

Do not permit (do permit) unaligned accesses.

-mold-align

Enable structure-alignment compatibility with Intel’s gcc release version 1.3 (based on

gcc 1.37). Currently this is buggy in that ‘#pragma align 1’ is always assumed as well,

and cannot be turned off.

2.12.13 DEC Alpha Options

These ‘-m’ options are defined for the DEC Alpha implementations:

-mno-soft-float

-msoft-float

Use (do not use) the hardware floating-point instructions for floating-point opera-

tions. When -msoft-float is specified, functions in ‘libgcc1.c’ will be used to per-

form floating-point operations. Unless they are replaced by routines that emulate the

floating-point operations, or compiled in such a way as to call such emulations routines,

these routines will issue floating-point operations. If you are compiling for an Alpha

Chapter 2: GNU CC Command Options 57

without floating-point operations, you must ensure that the library is built so as not

to call them.

Note that Alpha implementations without floating-point operations are required to

have floating-point registers.

-mfp-reg

-mno-fp-regs

Generate code that uses (does not use) the floating-point register set. -mno-fp-regs

implies -msoft-float. If the floating-point register set is not used, floating point

operands are passed in integer registers as if they were integers and floating-point

results are passed in $0 instead of $f0. This is a non-standard calling sequence, so any

function with a floating-point argument or return value called by code compiled with

-mno-fp-regs must also be compiled with that option.

A typical use of this option is building a kernel that does not use, and hence need not

save and restore, any floating-point registers.

2.12.14 Options for System V

These additional options are available on System V Release 4 for compatibility with other

compilers on those systems:

-Qy Identify the versions of each tool used by the compiler, in a .ident assembler directive

in the output.

-Qn Refrain from adding .ident directives to the output file (this is the default).

-YP,dirs Search the directories dirs, and no others, for libraries specified with ‘-l’.

-Ym,dir Look in the directory dir to find the M4 preprocessor. The assembler uses this option.

2.13 Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code generation.

Most of them have both positive and negative forms; the negative form of ‘-ffoo’ would be

‘-fno-foo’. In the table below, only one of the forms is listed—the one which is not the default.

You can figure out the other form by either removing ‘no-’ or adding it.

58 Using and Porting GNU CC

-fpcc-struct-return

Use the same convention for returning struct and union values that is used by the

usual C compiler on your system. This convention is less efficient for small structures,

and on many machines it fails to be reentrant; but it has the advantage of allowing

intercallability between GNU CC-compiled code and PCC-compiled code.

-fshort-enums

Allocate to an enum type only as many bytes as it needs for the declared range of

possible values. Specifically, the enum type will be equivalent to the smallest integer

type which has enough room.

-fshort-double

Use the same size for double as for float.

-fshared-data

Requests that the data and non-const variables of this compilation be shared data

rather than private data. The distinction makes sense only on certain operating sys-

tems, where shared data is shared between processes running the same program, while

private data exists in one copy per process.

-fno-common

Allocate even uninitialized global variables in the bss section of the object file, rather

than generating them as common blocks. This has the effect that if the same variable

is declared (without extern) in two different compilations, you will get an error when

you link them. The only reason this might be useful is if you wish to verify that the

program will work on other systems which always work this way.

-fno-ident

Ignore the ‘#ident’ directive.

-fno-gnu-linker

Don’t output global initializations such as C++ constructors and destructors in the form

used by the GNU linker (on systems where the GNU linker is the standard method

of handling them). Use this option when you want to use a “collect” program and a

non-GNU linker.

-finhibit-size-directive

Don’t output a .size assembler directive, or anything else that would cause trouble if

the function is split in the middle, and the two halves are placed at locations far apart

in memory. This option is used when compiling ‘crtstuff.c’; you should not need to

use it for anything else.

-fnonnull-objects

Assume that objects reached through references are not null (C++ only).

Chapter 2: GNU CC Command Options 59

Normally, GNU C++ makes conservative assumptions about objects reached through

references. For example, the compiler must check that a is not null in code like the

following:

obj &a = g ();
a.f (2);

Checking that references of this sort have non-null values requires extra code, however,

and it is unnecessary for many programs. You can use ‘-fnonnull-objects’ to omit

the checks for null, if your program doesn’t require checking.

-fverbose-asm

Put extra commentary information in the generated assembly code to make it more

readable. This option is generally only of use to those who actually need to read the

generated assembly code (perhaps while debugging the compiler itself).

-fvolatile

Consider all memory references through pointers to be volatile.

-fpic If supported for the target machine, generate position-independent code (PIC) suitable

for use in a shared library. All addresses will be accessed through a global offset table

(GOT). If the GOT size for the linked executable exceeds a machine-specific maximum

size, you will get an error message from the linker indicating that ‘-fpic’ does not

work; recompile with ‘-fPIC’ instead. (These maximums are 16k on the m88k, 8k on

the Sparc, and 32k on the m68k and RS/6000. The 386 has no such limit.)

Position-independent code requires special support, and therefore works only on certain

machines. For the 386, GNU CC supports PIC for System V but not for the Sun 386i.

Code generated for the IBM RS/6000 is always position-independent.

The GNU assembler does not fully support PIC. Currently, you must use some other

assembler in order for PIC to work. We would welcome volunteers to upgrade GAS

to handle this; the first part of the job is to figure out what the assembler must do

differently.

-fPIC If supported for the target machine, emit position-independent code, suitable for dy-

namic linking and avoiding any limit on the size of the global offset table. This option

makes a difference on the m68k, m88k and the Sparc.

Position-independent code requires special support, and therefore works only on certain

machines.

-ffixed-reg

Treat the register named reg as a fixed register; generated code should never refer to

it (except perhaps as a stack pointer, frame pointer or in some other fixed role).

reg must be the name of a register. The register names accepted are machine-specific

and are defined in the REGISTER_NAMES macro in the machine description macro file.

This flag does not have a negative form, because it specifies a three-way choice.

60 Using and Porting GNU CC

-fcall-used-reg

Treat the register named reg as an allocatable register that is clobbered by function

calls. It may be allocated for temporaries or variables that do not live across a call.

Functions compiled this way will not save and restore the register reg.

Use of this flag for a register that has a fixed pervasive role in the machine’s execution

model, such as the stack pointer or frame pointer, will produce disastrous results.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-saved-reg

Treat the register named reg as an allocatable register saved by functions. It may be

allocated even for temporaries or variables that live across a call. Functions compiled

this way will save and restore the register reg if they use it.

Use of this flag for a register that has a fixed pervasive role in the machine’s execution

model, such as the stack pointer or frame pointer, will produce disastrous results.

A different sort of disaster will result from the use of this flag for a register in which

function values may be returned.

This flag does not have a negative form, because it specifies a three-way choice.

2.14 Environment Variables Affecting GNU CC

This section describes several environment variables that affect how GNU CC operates. They

work by specifying directories or prefixes to use when searching for various kinds of files.

Note that you can also specify places to search using options such as ‘-B’, ‘-I’ and ‘-L’ (see

Section 2.10 [Directory Options], page 41). These take precedence over places specified using

environment variables, which in turn take precedence over those specified by the configuration of

GNU CC. See Section 14.1 [Driver], page 265.

TMPDIR If TMPDIR is set, it specifies the directory to use for temporary files. GNU CC uses

temporary files to hold the output of one stage of compilation which is to be used as

input to the next stage: for example, the output of the preprocessor, which is the input

to the compiler proper.

GCC_EXEC_PREFIX

If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the names of the subprograms

executed by the compiler. No slash is added when this prefix is combined with the

name of a subprogram, but you can specify a prefix that ends with a slash if you wish.

If GNU CC cannot find the subprogram using the specified prefix, it tries looking in

the usual places for the subprogram.

Chapter 2: GNU CC Command Options 61

Other prefixes specified with ‘-B’ take precedence over this prefix.

This prefix is also used for finding files such as ‘crt0.o’ that are used for linking.

In addition, the prefix is used in an unusual way in finding the directories to search

for header files. For each of the standard directories whose name normally begins

with ‘/usr/local/lib/gcc-lib’ (more precisely, with the value of GCC_INCLUDE_DIR),

GNU CC tries replacing that beginning with the specified prefix to produce an alternate

directory name. Thus, with ‘-Bfoo/’, GNU CC will search ‘foo/bar’ where it would

normally search ‘/usr/local/lib/bar’. These alternate directories are searched first;

the standard directories come next.

COMPILER_PATH

The value of COMPILER_PATH is a colon-separated list of directories, much like PATH.

GNU CC tries the directories thus specified when searching for subprograms, if it can’t

find the subprograms using GCC_EXEC_PREFIX.

LIBRARY_PATH

The value of LIBRARY_PATH is a colon-separated list of directories, much like PATH.

GNU CC tries the directories thus specified when searching for special linker files, if

it can’t find them using GCC_EXEC_PREFIX. Linking using GNU CC also uses these

directories when searching for ordinary libraries for the ‘-l’ option (but directories

specified with ‘-L’ come first).

C_INCLUDE_PATH

CPLUS_INCLUDE_PATH

OBJC_INCLUDE_PATH

These environment variables pertain to particular languages. Each variable’s value is a

colon-separated list of directories, much like PATH. When GNU CC searches for header

files, it tries the directories listed in the variable for the language you are using, after

the directories specified with ‘-I’ but before the standard header file directories.

DEPENDENCIES_OUTPUT

If this variable is set, its value specifies how to output dependencies for Make based

on the header files processed by the compiler. This output looks much like the output

from the ‘-M’ option (see Section 2.7 [Preprocessor Options], page 37), but it goes to a

separate file, and is in addition to the usual results of compilation.

The value of DEPENDENCIES_OUTPUT can be just a file name, in which case the Make

rules are written to that file, guessing the target name from the source file name. Or

the value can have the form ‘file target’, in which case the rules are written to file file

using target as the target name.

62 Using and Porting GNU CC

2.15 Running Protoize

The program protoize is an optional part of GNU C. You can use it to add prototypes to

a program, thus converting the program to ANSI C in one respect. The companion program

unprotoize does the reverse: it removes argument types from any prototypes that are found.

When you run these programs, you must specify a set of source files as command line arguments.

The conversion programs start out by compiling these files to see what functions they define. The

information gathered about a file foo is saved in a file named ‘foo.X’.

After scanning comes actual conversion. The specified files are all eligible to be converted; any

files they include (whether sources or just headers) are eligible as well.

But not all the eligible files are converted. By default, protoize and unprotoize convert only

source and header files in the current directory. You can specify additional directories whose files

should be converted with the ‘-d directory ’ option. You can also specify particular files to exclude

with the ‘-x file’ option. A file is converted if it is eligible, its directory name matches one of the

specified directory names, and its name within the directory has not been excluded.

Basic conversion with protoize consists of rewriting most function definitions and function

declarations to specify the types of the arguments. The only ones not rewritten are those for

varargs functions.

protoize optionally inserts prototype declarations at the beginning of the source file, to make

them available for any calls that precede the function’s definition. Or it can insert prototype

declarations with block scope in the blocks where undeclared functions are called.

Basic conversion with unprotoize consists of rewriting most function declarations to remove

any argument types, and rewriting function definitions to the old-style pre-ANSI form.

Both conversion programs print a warning for any function declaration or definition that they

can’t convert. You can suppress these warnings with ‘-q’.

The output from protoize or unprotoize replaces the original source file. The original file is

renamed to a name ending with ‘.save’. If the ‘.save’ file already exists, then the source file is

simply discarded.

Chapter 2: GNU CC Command Options 63

protoize and unprotoize both depend on GNU CC itself to scan the program and collect

information about the functions it uses. So neither of these programs will work until GNU CC is

installed.

Here is a table of the options you can use with protoize and unprotoize. Each option works

with both programs unless otherwise stated.

‘-B directory ’

Look for the file ‘SYSCALLS.c.X’ in directory, instead of the usual directory (normally

‘/usr/local/lib’). This file contains prototype information about standard system

functions. This option applies only to protoize.

‘-c compilation-options’

Use compilation-options as the options when running gcc to produce the ‘.X’ files. The

special option ‘-aux-info’ is always passed in addition, to tell gcc to write a ‘.X’ file.

Note that the compilation options must be given as a single argument to protoize or

unprotoize. If you want to specify several gcc options, you must quote the entire set

of compilation options to make them a single word in the shell.

There are certain gcc arguments that you cannot use, because they would produce the

wrong kind of output. These include ‘-g’, ‘-O’, ‘-c’, ‘-S’, and ‘-o’ If you include these

in the compilation-options, they are ignored.

‘-C’ Rename files to end in ‘.C’ instead of ‘.c’. This is convenient if you are converting a

C program to C++. This option applies only to protoize.

‘-g’ Add explicit global declarations. This means inserting explicit declarations at the

beginning of each source file for each function that is called in the file and was not

declared. These declarations precede the first function definition that contains a call

to an undeclared function. This option applies only to protoize.

‘-i string’ Indent old-style parameter declarations with the string string. This option applies only

to protoize.

unprotoize converts prototyped function definitions to old-style function definitions,

where the arguments are declared between the argument list and the initial ‘{’. By

default, unprotoize uses five spaces as the indentation. If you want to indent with

just one space instead, use ‘-i " "’.

‘-k’ Keep the ‘.X’ files. Normally, they are deleted after conversion is finished.

‘-l’ Add explicit local declarations. protoize with ‘-l’ inserts a prototype declaration for

each function in each block which calls the function without any declaration. This

option applies only to protoize.

‘-n’ Make no real changes. This mode just prints information about the conversions that

would have been done without ‘-n’.

64 Using and Porting GNU CC

‘-N’ Make no ‘.save’ files. The original files are simply deleted. Use this option with

caution.

‘-p program’

Use the program program as the compiler. Normally, the name ‘gcc’ is used.

‘-q’ Work quietly. Most warnings are suppressed.

‘-v’ Print the version number, just like ‘-v’ for gcc.

If you need special compiler options to compile one of your program’s source files, then you

should generate that file’s ‘.X’ file specially, by running gcc on that source file with the appropriate

options and the option ‘-aux-info’. Then run protoize on the entire set of files. protoize will

use the existing ‘.X’ file because it is newer than the source file. For example:

gcc -Dfoo=bar file1.c -aux-info
protoize *.c

You need to include the special files along with the rest in the protoize command, even though

their ‘.X’ files already exist, because otherwise they won’t get converted.

See Section 5.7 [Protoize Caveats], page 134, for more information on how to use protoize

successfully.

Chapter 3: Installing GNU CC 65

3 Installing GNU CC

Here is the procedure for installing GNU CC on a Unix system.

See below for VMS systems, and modified procedures needed on other systems including HP,

Sun, 3b1, SCO Unix and Unos. The following section says how to compile in a separate directory

on Unix; here we assume you compile in the same directory that contains the source files.

1. If you have built GNU CC previously in the same directory for a different target machine,

do ‘make distclean’ to delete all files that might be invalid. One of the files this deletes is

‘Makefile’; if ‘make distclean’ complains that ‘Makefile’ does not exist, it probably means

that the directory is already suitably clean.

2. On a System V release 4 system, make sure ‘/usr/bin’ precedes ‘/usr/ucb’ in PATH. The cc

command in ‘/usr/ucb’ uses libraries which have bugs.

3. Specify the host and target machine configurations. You do this by running the file ‘configure’

with appropriate arguments.

If you are building a compiler to produce code for the machine it runs on, specify just one ma-

chine type. Use the ‘--target’ option; the host type will default to be the same as the target.

(For information on building a cross-compiler, see Section 3.2 [Cross-Compiler], page 75.) The

command looks like this:

configure --target=sparc-sun-sunos4.1

A configuration name may be canonical or it may be more or less abbreviated.

A canonical configuration name has three parts, separated by dashes. It looks like this:

‘cpu-company-system’. (The three parts may themselves contain dashes; ‘configure’ can

figure out which dashes serve which purpose.) For example, ‘m68k-sun-sunos4.1’ specifies a

Sun 3.

You can also replace parts of the configuration by nicknames or aliases. For example, ‘sun3’

stands for ‘m68k-sun’, so ‘sun3-sunos4.1’ is another way to specify a Sun 3. You can also

use simply ‘sun3-sunos’, since the version of SunOS is assumed by default to be version 4.

‘sun3-bsd’ also works, since ‘configure’ knows that the only BSD variant on a Sun 3 is

SunOS.

You can specify a version number after any of the system types, and some of the CPU types.

In most cases, the version is irrelevant, and will be ignored. So you might as well specify the

version if you know it.

Here are the possible CPU types:

a29k, alpha, arm, cn, elxsi, hppa1.0, hppa1.1, i386, i860, i960, m68000, m68k,
m88k, mips, ns32k, pyramid, romp, rs6000, sparc, vax, we32k.

66 Using and Porting GNU CC

Here are the recognized company names. As you can see, customary abbreviations are used

rather than the longer official names.

alliant, altos, apollo, att, cbm, convergent, convex, crds, dec, dg, encore, harris,
hp, ibm, mips, motorola, ncr, next, ns, omron, sequent, sgi, sony, sun, tti, unicom.

The company name is meaningful only to disambiguate when the rest of the information

supplied is insufficient. You can omit it, writing just ‘cpu-system’, if it is not needed. For

example, ‘vax-ultrix4.2’ is equivalent to ‘vax-dec-ultrix4.2’.

Here is a list of system types:

aix, aos, bsd, ctix, dgux, dynix, genix, hpux, isc, linux, luna, mach, minix, newsos,
osf, osfrose, riscos, sco, sunos, sysv, ultrix, unos, vms.

You can omit the system type; then ‘configure’ guesses the operating system from the CPU

and company.

You can add a version number to the system type; this may or may not make a difference. For

example, you can write ‘bsd4.3’ or ‘bsd4.4’ to distinguish versions of BSD. In practice, the

version number is most needed for ‘sysv3’ and ‘sysv4’, which are often treated differently.

If you specify an impossible combination such as ‘i860-dg-vms’, then you may get an error

message from ‘configure’, or it may ignore part of the information and do the best it can

with the rest. ‘configure’ always prints the canonical name for the alternative that it used.

Often a particular model of machine has a name. Many machine names are recognized as

aliases for CPU/company combinations. Thus, the machine name ‘sun3’, mentioned above, is

an alias for ‘m68k-sun’. Sometimes we accept a company name as a machine name, when the

name is popularly used for a particular machine. Here is a table of the known machine names:

3300, 3b1, 3bn, 7300, altos3068, altos, apollo68, att-7300, balance, convex-cn,
crds, decstation-3100, decstation, delta, encore, fx2800, gmicro, hp7nn, hp8nn,
hp9k2nn, hp9k3nn, hp9k7nn, hp9k8nn, iris4d, iris, isi68, m3230, magnum, merlin,
miniframe, mmax, news-3600, news800, news, next, pbd, pc532, pmax, ps2, risc-
news, rtpc, sun2, sun386i, sun386, sun3, sun4, symmetry, tower-32, tower.

Remember that a machine name specifies both the cpu type and the company name.

There are four additional options you can specify independently to describe variant hardware

and software configurations. These are ‘--with-gnu-as’, ‘--with-gnu-ld’, ‘--with-stabs’

and ‘--nfp’.

‘--with-gnu-as’

On certain systems, you must specify whether you want GNU CC to work with

the usual compilation tools or with the GNU compilation tools (including GAS).

Use the ‘--with-gnu-as’ argument when you run ‘configure’, if you want to use

the GNU tools. (Specify ‘--with-gnu-ld’ as well, since on these systems GAS

works only with the GNU linker.) The systems where this makes a difference are

‘i386-anything-sysv’, ‘i860-anything-bsd’, ‘m68k-hp-hpux’, ‘m68k-sony-bsd’,

‘m68k-altos-sysv’, ‘m68000-hp-hpux’, and ‘m68000-att-sysv’. On any other

system, ‘--with-gnu-as’ has no effect.

Chapter 3: Installing GNU CC 67

‘--with-gnu-ld’

Specify the option ‘--with-gnu-ld’ if you plan to use the GNU linker. This

inhibits the installation of collect2, a program which otherwise serves as a front-

end for the system’s linker on most configurations.

‘--with-stabs’

On MIPS based systems, you must specify whether you want GNU CC to create

the normal ECOFF debugging format, or to use BSD-style stabs passed through

the ECOFF symbol table. The normal ECOFF debug format cannot fully handle

languages other than C. BSD stabs format can handle other languages, but it only

works with the GNU debugger GDB.

Normally, GNU CC uses the ECOFF debugging format by default; if you prefer

BSD stabs, specify ‘--with-stabs’ when you configure GNU CC.

No matter which default you choose when you configure GNU CC, the user can

use the ‘-gcoff’ and ‘-gstabs+’ options to specify explicitly the debug format for

a particular compilation.

‘--nfp’ On certain systems, you must specify whether the machine has a floating point

unit. These systems are ‘m68k-sun-sunosn’ and ‘m68k-isi-bsd’. On any other

system, ‘--nfp’ currently has no effect, though perhaps there are other systems

where it could usefully make a difference.

If you want to install your own homemade configuration files, you can use ‘local’ as the

company name to access them. If you use configuration ‘cpu-local’, the entire configuration

name is used to form the configuration file names.

Thus, if you specify ‘m68k-local’, then the files used are ‘m68k-local.md’, ‘m68k-local.h’,

‘m68k-local.c’, ‘xm-m68k-local.h’, ‘t-m68k-local’, and ‘x-m68k-local’.

Here is a list of configurations that have special treatment or special things you must know:

‘alpha-*-osf1’

Systems using processors that implement the DEC Alpha architecture and are

running the OSF/1 operating system. (VMS on the Alpha is not currently sup-

ported by GNU CC.) As of this writing, the only Alpha-based product currently

available from DEC is the 21064 (EV4) processor chip; no system-level products

can be ordered. This port is provided for those developers who might have early

Alpha hardware from DEC or other vendors and run the OSF/1 operating system.

It has not been extensively tested and both the C++ and Objective-C languages

may not work, except in a cross-compilation environment.

The ASSEMBLE_FILE_START macro writes a .verstamp directive containing the

version of the calling sequence. Currently, we use ‘9 0’, which we believe will work

until the official release by DEC of their system, at which point ‘3 11’ is the correct

value. If you get a mismatch error from the assembler on a .verstamp line, consult

68 Using and Porting GNU CC

the file ‘/usr/include/stamp.h’ for the present value. GNU C on the Alpha does

not support versions of DEC’s OSF/1 earlier than BL9; if you are running an older

version, we suggest you ask your DEC contact for an update.

Note that since the Alpha is a 64-bit architecture, cross-compilers from 32-bit

machines will not generate as efficient code as that generated when the compiler

is running on a 64-bit machine because many optimizations that depend on being

able to represent a word on the target in an integral value on the host cannot be

performed.

‘a29k’ AMD Am29K-family processors. These are normally used in embedded applica-

tions. There are no standard Unix configurations. This configuration corresponds

to AMD’s standard calling sequence and binary interface and is compatible with

other 29K tools.

You may need to make a variant of the file ‘a29k.h’ for your particular configura-

tion.

‘a29k-*-bsd’

AMD Am29050 used in a system running a variant of BSD Unix.

‘elxsi-elxsi-bsd’

The Elxsi’s C compiler has known limitations that prevent it from compiling GNU

C. Please contact mrs@cygnus.com for more details.

‘i386-*-sco’

Compilation with RCC is recommended.

‘i386-ibm-aix’

You need a version of GAS that you can get from tranle@intellicorp.com.

‘i386-sequent’

Go to the Berkeley universe before compiling. In addition, you probably need to

create a file named ‘string.h’ containing just one line: ‘#include <strings.h>’.

‘i386-sun-sunos4’

You may find that you need another version of GNU CC to begin bootstrapping

with, since the current version when built with the system’s own compiler seems

to get an infinite loop compiling part of ‘libgcc2.c’. GNU CC version 2 compiled

with GNU CC (any version) seems not to have this problem.

‘m68000-att’

AT&T 3b1, a.k.a. 7300 PC. Special procedures are needed to compile GNU CC

with this machine’s standard C compiler, due to bugs in that compiler. See Sec-

tion 3.5 [3b1 Install], page 79. You can bootstrap it more easily with previous

versions of GNU CC if you have them.

Chapter 3: Installing GNU CC 69

‘m68000-hp-bsd’

HP 9000 series 200 running BSD. Note that the C compiler that comes with this

system cannot compile GNU CC; contact law@cs.utah.edu to get binaries of GNU

CC for bootstrapping.

‘m68k-altos’

Altos 3068. You must use the GNU assembler, linker and debugger, with COFF-

encapsulation. Also, you must fix a kernel bug. Details in the file ‘README.ALTOS’.

‘m68k-hp-hpux’

HP 9000 series 300 or 400 running HP-UX. HP-UX version 8.0 has a bug in the

assembler that prevents compilation of GNU CC. To fix it, get patch PHCO 0800

from HP.

In addition, ‘--gas’ does not currently work with this configuration. Changes in

HP-UX have broken the library conversion tool and the linker.

‘m68k-sun’

Sun 3. We do not provide a configuration file to use the Sun FPA by default,

because programs that establish signal handlers for floating point traps inherently

cannot work with the FPA.

‘m88k-svr3’

Motorola m88k running the AT&T/Unisoft/Motorola V.3 reference port. These

systems tend to use the Green Hills C, revision 1.8.5, as the standard C compiler.

There are apparently bugs in this compiler that result in object files differences

between stage 2 and stage 3. If this happens, make the stage 4 compiler and

compare it to the stage 3 compiler. If the stage 3 and stage 4 object files are

identical, this suggests a problem with the standard C compiler. It is best, however,

to use an older version of GNU CC for bootstrapping.

‘m88k-dgux’

Motorola m88k running DG/UX. To build native or cross compilers on DG/UX,

you must first change to the 88open BCS software development environment. This

is done by issuing this command:

eval ‘sde-target m88kbcs‘

‘mips-mips-bsd’

MIPS machines running the MIPS operating system in BSD mode. It’s possi-

ble that some old versions of the system lack the functions memcpy, memcmp, and

memset. If your system lacks these, you must remove or undo the definition of

TARGET_MEM_FUNCTIONS in ‘mips-bsd.h’.

‘mips-sony-sysv’

Sony MIPS NEWS. This works in NEWSOS 5.0.1, but not in 5.0.2 (which uses ELF

instead of COFF). Support for 5.0.2 will probably be provided soon by volunteers.

70 Using and Porting GNU CC

‘ns32k-encore’

Encore ns32000 system. Encore systems are supported only under BSD.

‘ns32k-*-genix’

National Semiconductor ns32000 system. Genix has bugs in alloca and malloc;

you must get the compiled versions of these from GNU Emacs.

‘ns32k-sequent’

Go to the Berkeley universe before compiling. In addition, you probably need to

create a file named ‘string.h’ containing just one line: ‘#include <strings.h>’.

‘ns32k-utek’

UTEK ns32000 system (“merlin”). The C compiler that comes with this system

cannot compile GNU CC; contact ‘tektronix!reed!mason’ to get binaries of GNU

CC for bootstrapping.

‘romp-*-aos’

‘romp-*-mach’

The only operating systems supported for the IBM RT PC are AOS and MACH.

GNU CC does not support AIX running on the RT. We recommend you compile

GNU CC with an earlier version of itself; if you compile GNU CC with hc, the

Metaware compiler, it will work, but you will get mismatches between the stage 2

and stage 3 compilers in various files. These errors are minor differences in some

floating-point constants and can be safely ignored; the stage 3 compiler is correct.

‘rs6000-*-aix’

Read the file ‘README.RS6000’ for information on how to get a fix for

a problem in the IBM assembler that prevents use of GNU CC. You

must either obtain the new assembler or avoid using the ‘-g’ switch. Note that

‘Makefile.in’ uses ‘-g’ by default when compiling ‘libgcc2.c’.

‘vax-dec-ultrix’

Don’t try compiling with Vax C (vcc). It produces incorrect code in some cases

(for example, when alloca is used).

Meanwhile, compiling ‘cp-parse.c’ with pcc does not work because of an internal

table size limitation in that compiler. To avoid this problem, compile just the

GNU C compiler first, and use it to recompile building all the languages that you

want to run.

Here we spell out what files will be set up by configure. Normally you need not be concerned

with these files.

• A symbolic link named ‘config.h’ is made to the top-level config file for the machine you

will run the compiler on (see Chapter 15 [Config], page 355). This file is responsible for

defining information about the host machine. It includes ‘tm.h’.

Chapter 3: Installing GNU CC 71

The top-level config file is located in the subdirectory ‘config’. Its name is always

‘xm-something.h’; usually ‘xm-machine.h’, but there are some exceptions.

If your system does not support symbolic links, you might want to set up ‘config.h’ to

contain a ‘#include’ command which refers to the appropriate file.

• A symbolic link named ‘tconfig.h’ is made to the top-level config file for your target

machine. This is used for compiling certain programs to run on that machine.

• A symbolic link named ‘tm.h’ is made to the machine-description macro file for your target

machine. It should be in the subdirectory ‘config’ and its name is often ‘machine.h’.

• A symbolic link named ‘md’ will be made to the machine description pattern file. It should

be in the ‘config’ subdirectory and its name should be ‘machine.md’; but machine is often

not the same as the name used in the ‘tm.h’ file because the ‘md’ files are more general.

• A symbolic link named ‘aux-output.c’ will be made to the output subroutine file for your

machine. It should be in the ‘config’ subdirectory and its name should be ‘machine.c’.

• The command file ‘configure’ also constructs ‘Makefile’ by adding some text to the

template file ‘Makefile.in’. The additional text comes from files in the ‘config’ directory,

named ‘t-target’ and ‘h-host’. If these files do not exist, it means nothing needs to be

added for a given target or host.

4. Make sure the Bison parser generator is installed. (This is unnecessary if the Bison output

files ‘c-parse.c’ and ‘cexp.c’ are more recent than ‘c-parse.y’ and ‘cexp.y’ and you do not

plan to change the ‘.y’ files.)

Bison versions older than Sept 8, 1988 will produce incorrect output for ‘c-parse.c’.

5. Build the compiler. Just type ‘make LANGUAGES=c’ in the compiler directory.

‘LANGUAGES=c’ specifies that only the C compiler should be compiled. The makefile normally

builds compilers for all the supported languages; currently, C, C++ and Objective C. However,

C is the only language that is sure to work when you build with other non-GNU C compilers.

In addition, building anything but C at this stage is a waste of time.

In general, you can specify the languages to build by typing the argument ‘LANGUAGES="list"’,

where list is one or more words from the list ‘c’, ‘c++’, and ‘objective-c’.

Ignore any warnings you may see about “statement not reached” in ‘insn-emit.c’; they are

normal. Any other compilation errors may represent bugs in the port to your machine or

operating system, and should be investigated and reported (see Chapter 6 [Bugs], page 139).

Some commercial compilers fail to compile GNU CC because they have bugs or limitations.

For example, the Microsoft compiler is said to run out of macro space. Some Ultrix compilers

run out of expression space; then you need to break up the statement where the problem

happens.

If you are building with a previous GNU C compiler, do not use ‘CC=gcc’ on the make com-

mand or by editing the Makefile. Instead, use a full pathname to specify the compiler, such

72 Using and Porting GNU CC

as ‘CC=/usr/local/bin/gcc’. This is because make might execute the ‘gcc’ in the current

directory before all of the compiler components have been built.

6. If you are using COFF-encapsulation, you must convert ‘libgcc.a’ to a GNU-format library

at this point. See the file ‘README.ENCAP’ in the directory containing the GNU binary file

utilities, for directions.

7. If you are building a cross-compiler, stop here. See Section 3.2 [Cross-Compiler], page 75.

8. Move the first-stage object files and executables into a subdirectory with this command:

make stage1

The files are moved into a subdirectory named ‘stage1’. Once installation is complete, you

may wish to delete these files with rm -r stage1.

9. Recompile the compiler with itself, with this command:

make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O"

This is called making the stage 2 compiler.

The command shown above builds compilers for all the supported languages. If you don’t want

them all, you can specify the languages to build by typing the argument ‘LANGUAGES="list"’.

list should contain one or more words from the list ‘c’, ‘c++’, ‘objective-c’, and ‘proto’.

Separate the words with spaces. ‘proto’ stands for the programs protoize and unprotoize;

they are not a separate language, but you use LANGUAGES to enable or disable their installation.

If you are going to build the stage 3 compiler, then you might want to build only the C language

in stage 2.

Once you have built the stage 2 compiler, if you are short of disk space, you can delete the

subdirectory ‘stage1’.

On a 68000 or 68020 system lacking floating point hardware, unless you have selected a ‘tm.h’

file that expects by default that there is no such hardware, do this instead:

make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O -msoft-float"

10. If you wish to test the compiler by compiling it with itself one more time, do this:

make stage2
make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O"

This is called making the stage 3 compiler. Aside from the ‘-B’ option, the compiler options

should be the same as when you made the stage 2 compiler. But the LANGUAGES option need

not be the same. The command shown above builds compilers for all the supported languages;

if you don’t want them all, you can specify the languages to build by typing the argument

‘LANGUAGES="list"’, as described above.

Then compare the latest object files with the stage 2 object files—they ought to be identical,

unless they contain time stamps. You can compare the files, disregarding the time stamps if

any, like this:

make compare

Chapter 3: Installing GNU CC 73

This will mention any object files that differ between stage 2 and stage 3. Any difference, no

matter how innocuous, indicates that the stage 2 compiler has compiled GNU CC incorrectly,

and is therefore a potentially serious bug which you should investigate and report (see Chapter 6

[Bugs], page 139).

If your system does not put time stamps in the object files, then this is a faster way to compare

them (using the Bourne shell):

for file in *.o; do
cmp $file stage2/$file
done

If you have built the compiler with the ‘-mno-mips-tfile’ option on MIPS machines, you will

not be able to compare the files.

11. Install the compiler driver, the compiler’s passes and run-time support. You can use the

following command:

make install CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O" LANGUAGES="list"

(Use the same value for CC, CFLAGS and LANGUAGES that you used when compiling the files

that are being installed. One reason this is necessary is that some versions of Make have bugs

and recompile files gratuitously when you do this step. If you use the same variable values,

those files will be recompiled properly.

This copies the files ‘cc1’, ‘cpp’ and ‘libgcc.a’ to files ‘cc1’, ‘cpp’ and ‘libgcc.a’ in directory

‘/usr/local/lib/gcc-lib/target/version’, which is where the compiler driver program looks

for them. Here target is the target machine type specified when you ran ‘configure’, and

version is the version number of GNU CC. This naming scheme permits various versions

and/or cross-compilers to coexist.

It also copies the driver program ‘gcc’ into the directory ‘/usr/local/bin’, so that it appears

in typical execution search paths.

On some systems, this command will cause recompilation of some files. This is usually due to

bugs in make. You should either ignore this problem, or use GNU Make.

Warning: there is a bug in alloca in the Sun library. To avoid this bug, be sure to

install the executables of GNU CC that were compiled by GNU CC. (That is, the

executables from stage 2 or 3, not stage 1.) They use alloca as a built-in function

and never the one in the library.

(It is usually better to install GNU CC executables from stage 2 or 3, since they usually run

faster than the ones compiled with some other compiler.)

12. Install the Objective C library (if you have built the Objective C compiler). Here is the

command to do this:

make install-libobjc CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O"

74 Using and Porting GNU CC

13. Correct errors in the header files on your machine.

Various system header files often contain constructs which are erroneous, incompatible with

ANSI C or otherwise unsuitable, and they will not work when you compile programs with

GNU CC.

The most common erroneous construct is found in ‘ioctl.h’, where a macro expects argument

values to be substituted for argument names inside of character constants—something not done

in ANSI C. This particular problem can be prevented by using ‘-traditional’. Other problems

are not so easy to work around.

GNU CC comes with shell scripts to fix known header file problems. They install corrected

copies of various header files in a special directory where only GNU CC will normally look for

them. The scripts adapt to various systems by searching all the system header files for the

problem cases that we know about.

Use the following command to do this:

make install-fixincludes

If you selected a different directory for GNU CC installation when you installed it, by specifying

the Make variable prefix or libdir, specify it the same way in this command.

Note that some systems are starting to come with ANSI C system header files. On these

systems, don’t run install-fixincludes; it may not work, and is certainly not necessary.

One exception: there are is a special script for System V release 4, which you should run.

It is not the purpose of install-fixincludes to add prototypes to the system header files.

We support headers with ANSI C prototypes in the GNU C Library, and we have no time to

support adding them to other systems’ header files.

14. If you’re going to use C++, it’s likely that you need to also install the libg++ distribution. It

should be available from the same place where you got the GCC distribution. Just as GCC

does not distribute a C runtime library, it also does not include a C++ run-time library. All

I/O functionality, special class libraries, etc., are available in the libg++ distribution.

If you cannot install the compiler’s passes and run-time support in ‘/usr/local/lib’, you can

alternatively use the ‘-B’ option to specify a prefix by which they may be found. The compiler

concatenates the prefix with the names ‘cpp’, ‘cc1’ and ‘libgcc.a’. Thus, you can put the files in

a directory ‘/usr/foo/gcc’ and specify ‘-B/usr/foo/gcc/’ when you run GNU CC.

Also, you can specify an alternative default directory for these files by setting the Make variable

libdir when you make GNU CC.

Chapter 3: Installing GNU CC 75

3.1 Compilation in a Separate Directory

If you wish to build the object files and executables in a directory other than the one containing

the source files, here is what you must do differently:

1. Make sure you have a version of Make that supports the VPATH feature. (GNU Make supports

it, as do Make versions on most BSD systems.)

2. If you have ever run ‘configure’ in the source directory, you must undo the configuration. Do

this by running:

make distclean

3. Go to the directory in which you want to build the compiler before running ‘configure’:

mkdir gcc-sun3
cd gcc-sun3

On systems that do not support symbolic links, this directory must be on the same file system

as the source code directory.

4. Specify where to find ‘configure’ when you run it:

../gcc/configure . . .

This also tells configure where to find the compiler sources; configure takes the directory

from the file name that was used to invoke it. But if you want to be sure, you can specify the

source directory with the ‘--srcdir’ option, like this:

../gcc/configure --srcdir=../gcc sun3

The directory you specify with ‘--srcdir’ need not be the same as the one that configure is

found in.

Now, you can run make in that directory. You need not repeat the configuration steps shown

above, when ordinary source files change. You must, however, run configure again when the

configuration files change, if your system does not support symbolic links.

3.2 Building and Installing a Cross-Compiler

GNU CC can function as a cross-compiler for many machines, but not all.

• Cross-compilers for the Mips as target do not work because the auxiliary programs ‘mips-tdump.c’

and ‘mips-tfile.c’ can’t be compiled on anything but a Mips.

76 Using and Porting GNU CC

• Cross-compilers to or from the Vax probably don’t work completely because the Vax uses an

incompatible floating point format (not IEEE format).

Since GNU CC generates assembler code, you probably need a cross-assembler that GNU CC

can run, in order to produce object files. If you want to link on other than the target machine, you

need a cross-linker as well. You also need header files and libraries suitable for the target machine

that you can install on the host machine.

To build GNU CC as a cross-compiler, you start out by running configure. You must specify

two different configurations, the host and the target. Use the ‘--host=host’ option for the host

and ‘--target=target’ to specify the target type. For example, here is how to configure for a

cross-compiler that runs on a hypothetical Intel 386 system and produces code for an HP 68030

system running BSD:

configure --target=m68k-hp-bsd4.3 --host=i386-bozotheclone-bsd4.3

Next you should install the cross-assembler and cross-linker (and ar and ranlib). Put them

in the directory ‘/usr/local/target/bin’. The installation of GNU CC will find them there and

copy or link them to the proper place to find them when you run the cross-compiler later.

If you want to install any additional libraries to use with the cross-compiler, put them in the

directory ‘/usr/local/target/lib’; all files in that subdirectory will be installed in the proper

place when you install the cross-compiler. Likewise, put the header files for the target machine in

‘/usr/local/target/include’.

You must now produce a substitute for ‘libgcc1.a’. Normally this file is compiled with the

“native compiler” for the target machine; compiling it with GNU CC does not work. But compiling

it with the host machine’s compiler also doesn’t work—that produces a file that would run on the

host, and you need it to run on the target.

We can’t give you any automatic way to produce this substitute. For some targets, the subrou-

tines in ‘libgcc1.c’ are not actually used. You need not provide the ones that won’t be used. The

ones that most commonly are used are the multiplication, division and remainder routines—many

RISC machines rely on the library for this. One way to make them work is to define the appro-

priate perform_. . . macros for the subroutines that you need. If these definitions do not use the C

arithmetic operators that they are meant to implement, you might be able to compile them with

Chapter 3: Installing GNU CC 77

the cross-compiler you are building. To do this, specify ‘LIBGCC1=libgcc1.a OLDCC=./xgcc’ when

building the compiler.

Now you can proceed just as for compiling a single-machine compiler through the step of building

stage 1. If you have not provided some sort of ‘libgcc1.a’, then compilation will give up at the

point where it needs that file, printing a suitable error message. If you do provide ‘libgcc1.a’,

then building the compiler will automatically compile and link a test program called ‘cross-test’;

if you get errors in the linking, it means that not all of the necessary routines in ‘libgcc1.a’ are

available.

When you are using a cross-compiler configuration, building stage 1 does not compile all of

GNU CC. This is because one part of building, the compilation of ‘libgcc2.c’, requires use of the

cross-compiler.

However, when you type ‘make install’ to install the bulk of the cross-compiler, that will also

compile ‘libgcc2.c’ and install the resulting ‘libgcc.a’.

Do not try to build stage 2 for a cross-compiler. It doesn’t work to rebuild GNU CC as a

cross-compiler using the cross-compiler, because that would produce a program that runs on the

target machine, not on the host. For example, if you compile a 386-to-68030 cross-compiler with

itself, the result will not be right either for the 386 (because it was compiled into 68030 code) or

for the 68030 (because it was configured for a 386 as the host). If you want to compile GNU CC

into 68030 code, whether you compile it on a 68030 or with a cross-compiler on a 386, you must

specify a 68030 as the host when you configure it.

3.3 Installing GNU CC on the HP Precision Architecture

There are two variants of this CPU, called 1.0 and 1.1, which have different machine descriptions.

You must use the right one for your machine. All 7nn machines and 8n7 machines use 1.1, while

all other 8nn machines use 1.0.

The easiest way to handle this problem is to use ‘configure hpnnn’ or ‘configure hpnnn-hpux’,

where nnn is the model number of the machine. Then ‘configure’ will figure out if the machine is

a 1.0 or 1.1. Use ‘uname -a’ to find out the model number of your machine.

‘-g’ does not work on HP-UX, since that system uses a peculiar debugging format which GNU

CC does not know about. There are preliminary versions of GAS and GDB for the HP-PA which do

78 Using and Porting GNU CC

work with GNU CC for debugging. You can get them by anonymous ftp from jaguar.cs.utah.edu

‘dist’ subdirectory. You would need to install GAS in the file

/usr/local/lib/gcc-lib/configuration/gccversion/as

where configuration is the configuration name (perhaps ‘hpnnn-hpux’) and gccversion is the GNU

CC version number. Do this before starting the build process, otherwise you will get errors from

the HPUX assembler while building ‘libgcc2.a’. The command

make install-dir

will create the necessary directory hierarchy so you can install GAS before building GCC.

If you obtained GAS before October 6, 1992 it is highly recommended you get a new one to

avoid several bugs which have been discovered recently.

To enable debugging, configure GNU CC with the ‘--gas’ option before building.

3.4 Installing GNU CC on the Sun

Make sure the environment variable FLOAT_OPTION is not set when you compile ‘libgcc.a’. If

this option were set to f68881 when ‘libgcc.a’ is compiled, the resulting code would demand to

be linked with a special startup file and would not link properly without special pains.

There is a bug in alloca in certain versions of the Sun library. To avoid this bug, install the

binaries of GNU CC that were compiled by GNU CC. They use alloca as a built-in function and

never the one in the library.

Some versions of the Sun compiler crash when compiling GNU CC. The problem is a segmenta-

tion fault in cpp. This problem seems to be due to the bulk of data in the environment variables.

You may be able to avoid it by using the following command to compile GNU CC with Sun CC:

make CC="TERMCAP=x OBJS=x LIBFUNCS=x STAGESTUFF=x cc"

Chapter 3: Installing GNU CC 79

3.5 Installing GNU CC on the 3b1

Installing GNU CC on the 3b1 is difficult if you do not already have GNU CC running, due to

bugs in the installed C compiler. However, the following procedure might work. We are unable to

test it.

1. Comment out the ‘#include "config.h"’ line on line 37 of ‘cccp.c’ and do ‘make cpp’. This

makes a preliminary version of GNU cpp.

2. Save the old ‘/lib/cpp’ and copy the preliminary GNU cpp to that file name.

3. Undo your change in ‘cccp.c’, or reinstall the original version, and do ‘make cpp’ again.

4. Copy this final version of GNU cpp into ‘/lib/cpp’.

5. Replace every occurrence of obstack_free in the file ‘tree.c’ with _obstack_free.

6. Run make to get the first-stage GNU CC.

7. Reinstall the original version of ‘/lib/cpp’.

8. Now you can compile GNU CC with itself and install it in the normal fashion.

3.6 Installing GNU CC on Unos

Use ‘configure unos’ for building on Unos.

The Unos assembler is named casm instead of as. For some strange reason linking ‘/bin/as’ to

‘/bin/casm’ changes the behavior, and does not work. So, when installing GNU CC, you should

install the following script as ‘as’ in the subdirectory where the passes of GCC are installed:

#!/bin/sh
casm $*

The default Unos library is named ‘libunos.a’ instead of ‘libc.a’. To allow GNU CC to

function, either change all references to ‘-lc’ in ‘gcc.c’ to ‘-lunos’ or link ‘/lib/libc.a’ to

‘/lib/libunos.a’.

When compiling GNU CC with the standard compiler, to overcome bugs in the support of

alloca, do not use ‘-O’ when making stage 2. Then use the stage 2 compiler with ‘-O’ to make the

stage 3 compiler. This compiler will have the same characteristics as the usual stage 2 compiler on

other systems. Use it to make a stage 4 compiler and compare that with stage 3 to verify proper

compilation.

80 Using and Porting GNU CC

(Perhaps simply defining ALLOCA in ‘x-crds’ as described in the comments there will make the

above paragraph superfluous. Please inform us of whether this works.)

Unos uses memory segmentation instead of demand paging, so you will need a lot of memory.

5 Mb is barely enough if no other tasks are running. If linking ‘cc1’ fails, try putting the object

files into a library and linking from that library.

3.7 Installing GNU CC on VMS

The VMS version of GNU CC is distributed in a backup saveset containing both source code

and precompiled binaries.

To install the ‘gcc’ command so you can use the compiler easily, in the same manner as you use

the VMS C compiler, you must install the VMS CLD file for GNU CC as follows:

1. Define the VMS logical names ‘GNU_CC’ and ‘GNU_CC_INCLUDE’ to point to the directories where

the GNU CC executables (‘gcc-cpp.exe’, ‘gcc-cc1.exe’, etc.) and the C include files are kept

respectively. This should be done with the commands:

$ assign /system /translation=concealed -
disk:[gcc.] gnu_cc

$ assign /system /translation=concealed -
disk:[gcc.include.] gnu_cc_include

with the appropriate disk and directory names. These commands can be placed in your system

startup file so they will be executed whenever the machine is rebooted. You may, if you choose,

do this via the ‘GCC_INSTALL.COM’ script in the ‘[GCC]’ directory.

2. Install the ‘GCC’ command with the command line:

$ set command /table=sys$common:[syslib]dcltables -
/output=sys$common:[syslib]dcltables gnu_cc:[000000]gcc

$ install replace sys$common:[syslib]dcltables

3. To install the help file, do the following:

$ library/help sys$library:helplib.hlb gcc.hlp

Now you can invoke the compiler with a command like ‘gcc /verbose file.c’, which is equiv-

alent to the command ‘gcc -v -c file.c’ in Unix.

If you wish to use GNU C++ you must first install GNU CC, and then perform the following

steps:

Chapter 3: Installing GNU CC 81

1. Define the VMS logical name ‘GNU_GXX_INCLUDE’ to point to the directory where the prepro-

cessor will search for the C++ header files. This can be done with the command:

$ assign /system /translation=concealed -
disk:[gcc.gxx_include.] gnu_gxx_include

with the appropriate disk and directory name. If you are going to be using libg++, this is where

the libg++ install procedure will install the libg++ header files.

2. Obtain the file ‘gcc-cc1plus.exe’, and place this in the same directory that ‘gcc-cc1.exe’

is kept.

The GNU C++ compiler can be invoked with a command like ‘gcc /plus /verbose file.cc’,

which is equivalent to the command ‘g++ -v -c file.cc’ in Unix.

We try to put corresponding binaries and sources on the VMS distribution tape. But sometimes

the binaries will be from an older version than the sources, because we don’t always have time

to update them. (Use the ‘/version’ option to determine the version number of the binaries and

compare it with the source file ‘version.c’ to tell whether this is so.) In this case, you should use

the binaries you get to recompile the sources. If you must recompile, here is how:

1. Execute the command procedure ‘vmsconfig.com’ to copy files ‘vax-vms.h’, ‘xm-vax-vms.h’,

‘vax.c’ and ‘vax.md’ to ‘tm.h’, ‘config.h’, ‘aux-output.c’, and ‘md.’ respectively, and to

create files ‘tconfig.h’ and ‘hconfig.h’. This procedure also creates several linker option

files used by ‘make-cc1.com’ and a data file used by ‘make-l2.com’.

$ @vmsconfig.com

2. Setup the logical names and command tables as defined above. In addition, define the VMS

logical name ‘GNU_BISON’ to point at the to the directories where the Bison executable is kept.

This should be done with the command:

$ assign /system /translation=concealed -
disk:[bison.] gnu_bison

You may, if you choose, use the ‘INSTALL_BISON.COM’ script in the ‘[BISON]’ directory.

3. Install the ‘BISON’ command with the command line:

$ set command /table=sys$common:[syslib]dcltables -
/output=sys$common:[syslib]dcltables -
gnu_bison:[000000]bison

$ install replace sys$common:[syslib]dcltables

4. Type ‘@make-gcc’ to recompile everything (alternatively, you may submit the file ‘make-gcc.com’

to a batch queue). If you wish to build the GNU C++ compiler as well as the GNU CC compiler,

you must first edit ‘make-gcc.com’ and follow the instructions that appear in the comments.

5. In order to use GCC, you need a library of functions which GCC compiled code will call to

perform certain tasks, and these functions are defined in the file ‘libgcc2.c’. To compile

82 Using and Porting GNU CC

this you should use the command procedure ‘make-l2.com’, which will generate the library

‘libgcc2.olb’. ‘libgcc2.olb’ should be built using the compiler built from the same distri-

bution that ‘libgcc2.c’ came from, and ‘make-gcc.com’ will automatically do all of this for

you.

To install the library, use the following commands:

$ library gnu_cc:[000000]gcclib/delete=(new,eprintf)
$ library libgcc2/extract=*/output=libgcc2.obj
$ library gnu_cc:[000000]gcclib libgcc2.obj

The first command simply removes old modules that will be replaced with modules from

libgcc2. If the VMS librarian complains about those modules not being present, simply ignore

the message and continue on with the next command.

Whenever you update the compiler on your system, you should also update the library with

the above procedure.

6. You may wish to build GCC in such a way that no files are written to the directory where the

source files reside. An example would be the when the source files are on a read-only disk. In

these cases, execute the following DCL commands (substituting your actual path names):

$ assign dua0:[gcc.build_dir.]/translation=concealed, -
dua1:[gcc.source_dir.]/translation=concealed gcc_build

$ set default gcc_build:[000000]

where ‘dua1:[gcc.source_dir]’ contains the source code, and ‘dua0:[gcc.build_dir]’ is

meant to contain all of the generated object files and executables. Once you have done this,

you can proceed building GCC as described above. (Keep in mind that ‘gcc_build’ is a rooted

logical name, and thus the device names in each element of the search list must be an actual

physical device name rather than another rooted logical name).

7. If you are building GNU CC with a previous version of GNU CC, you also should

check to see that you have the newest version of the assembler. In particular, GNU

CC version 2 treats global constant variables slightly differently from GNU CC version 1, and

GAS version 1.38.1 does not have the patches required to work with GCC version 2. If you use

GAS 1.38.1, then extern const variables will not have the read-only bit set, and the linker

will generate warning messages about mismatched psect attributes for these variables. These

warning messages are merely a nuisance, and can safely be ignored.

If you are compiling with a version of GNU CC older than 1.33, specify ‘/DEFINE=("inline=")’

as an option in all the compilations. This requires editing all the gcc commands in

‘make-cc1.com’. (The older versions had problems supporting inline.) Once you have a

working 1.33 or newer GNU CC, you can change this file back.

8. If you want to build GNU CC with the VAX C compiler, you will need to make minor changes

in ‘make-cccp.com’ and ‘make-cc1.com’ to choose alternate definitions of CC, CFLAGS, and

LIBS. See comments in those files. However, you must also have a working version of the GNU

assembler (GNU as, aka GAS) as it is used as the back-end for GNU CC to produce binary

Chapter 3: Installing GNU CC 83

object modules and is not included in the GNU CC sources. GAS is also needed to compile

‘libgcc2’ in order to build ‘gcclib’ (see above); ‘make-l2.com’ expects to be able to find it

operational in ‘gnu_cc:[000000]gnu-as.exe’.

To use GNU CC on VMS, you need the VMS driver programs ‘gcc.exe’, ‘gcc.com’, and

‘gcc.cld’. They are distributed with the VMS binaries (‘gcc-vms’) rather than the GNU CC

sources. GAS is also included in ‘gcc-vms’, as is Bison.

Once you have successfully built GNU CC with VAX C, you should use the resulting compiler

to rebuild itself. Before doing this, be sure to restore the CC, CFLAGS, and LIBS definitions

in ‘make-cccp.com’ and ‘make-cc1.com’. The second generation compiler will be able to take

advantage of many optimizations that must be suppressed when building with other compilers.

Under previous versions of GNU CC, the generated code would occasionally give strange results

when linked with the sharable ‘VAXCRTL’ library. Now this should work.

Even with this version, however, GNU CC itself should not be linked with the sharable ‘VAXCRTL’.

The version of qsort in ‘VAXCRTL’ has a bug (known to be present in VMS versions V4.6 through

V5.5) which causes the compiler to fail.

The executables that are generated by ‘make-cc1.com’ and ‘make-cccp.com’ use the object

library version of ‘VAXCRTL’ in order to make use of the qsort routine in ‘gcclib.olb’. If you wish

to link the compiler executables with the shareable image version of ‘VAXCRTL’, you should edit the

file ‘tm.h’ (created by ‘vmsconfig.com’) to define the macro QSORT_WORKAROUND.

QSORT_WORKAROUND is always defined when GNU CC is compiled with VAX C, to avoid a problem

in case ‘gcclib.olb’ is not yet available.

3.8 Installing GNU CC on the WE32K

These computers are also known as the 3b2, 3b5, 3b20 and other similar names. (However, the

3b1 is actually a 68000; see Section 3.5 [3b1 Install], page 79.)

Don’t use ‘-g’ when compiling with the system’s compiler. The system’s linker seems to be

unable to handle such a large program with debugging information.

84 Using and Porting GNU CC

The system’s compiler runs out of capacity when compiling ‘stmt.c’ in GNU CC. You can work

around this by building ‘cpp’ in GNU CC first, then use that instead of the system’s preprocessor

with the system’s C compiler to compile ‘stmt.c’. Here is how:

mv /lib/cpp /lib/cpp.att
cp cpp /lib/cpp.gnu
echo "/lib/cpp.gnu -traditional $*" > /lib/cpp
chmod +x /lib/cpp

The system’s compiler produces bad code for some of the GNU CC optimization files. So

you must build the stage 2 compiler without optimization. Then build a stage 3 compiler with

optimization. That executable should work. Here are the necessary commands:

make LANGUAGES=c CC=stage1/xgcc CFLAGS="-Bstage1/ -g"
make stage2
make CC=stage2/xgcc CFLAGS="-Bstage2/ -g -O"

You may need to raise the ULIMIT setting to build a C++ compiler, as the file ‘cc1plus’ is

larger than one megabyte.

3.9 Installing GNU CC on the MIPS

See Chapter 3 [Installation], page 65 about whether to use ‘--with-stabs’ or not.

The MIPS C compiler needs to be told to increase its table size for switch statements with the

‘-Wf,-XNg1500’ option in order to compile ‘cp-parse.c’. If you use the ‘-O2’ optimization option,

you also need to use ‘-Olimit 3000’. Both of these options are automatically generated in the

‘Makefile’ that the shell script ‘configure’ builds. If you override the CC make variable and use

the MIPS compilers, you may need to add ‘-Wf,-XNg1500 -Olimit 3000’.

MIPS computers running RISC-OS can support four different personalities: default, BSD 4.3,

System V.3, and System V.4 (older versions of RISC-OS don’t support V.4). To configure GCC

for these platforms use the following configurations:

‘mips-mips-riscosrev’

Default configuration for RISC-OS, revision rev.

Chapter 3: Installing GNU CC 85

‘mips-mips-riscosrevbsd’

BSD 4.3 configuration for RISC-OS, revision rev.

‘mips-mips-riscosrevsysv4’

System V.4 configuration for RISC-OS, revision rev.

‘mips-mips-riscosrevsysv’

System V.3 configuration for RISC-OS, revision rev.

The revision rev mentioned above is the revision of RISC-OS to use. You must reconfigure

GCC when going from a RISC-OS revision 4 to RISC-OS revision 5. This has the effect of avoiding

a linker bug (see Section 5.2 [Installation Problems], page 123 for more details).

DECstations can support three different personalities: Ultrix, DEC OSF/1, and OSF/rose. To

configure GCC for these platforms use the following configurations:

‘decstation-ultrix’

Ultrix configuration.

‘decstation-osf1’

Dec’s version of OSF/1.

‘decstation-osfrose’

Open Software Foundation reference port of OSF/1 which uses the OSF/rose object

file format instead of ECOFF. Normally, you would not select this configuration.

86 Using and Porting GNU CC

Chapter 4: GNU Extensions to the C Language 87

4 GNU Extensions to the C Language

GNU C provides several language features not found in ANSI standard C. (The ‘-pedantic’

option directs GNU CC to print a warning message if any of these features is used.) To test for the

availability of these features in conditional compilation, check for a predefined macro __GNUC__,

which is always defined under GNU CC.

4.1 Statements and Declarations within Expressions

A compound statement enclosed in parentheses may appear as an expression in GNU C. This

allows you to use loops, switches, and local variables within an expression.

Recall that a compound statement is a sequence of statements surrounded by braces; in this

construct, parentheses go around the braces. For example:

({ int y = foo (); int z;
if (y > 0) z = y;
else z = - y;
z; })

is a valid (though slightly more complex than necessary) expression for the absolute value of foo

().

The last thing in the compound statement should be an expression followed by a semicolon; the

value of this subexpression serves as the value of the entire construct. (If you use some other kind

of statement last within the braces, the construct has type void, and thus effectively no value.)

This feature is especially useful in making macro definitions “safe” (so that they evaluate each

operand exactly once). For example, the “maximum” function is commonly defined as a macro in

standard C as follows:

#define max(a,b) ((a) > (b) ? (a) : (b))

88 Using and Porting GNU CC

But this definition computes either a or b twice, with bad results if the operand has side effects.

In GNU C, if you know the type of the operands (here let’s assume int), you can define the macro

safely as follows:

#define maxint(a,b) \
({int _a = (a), _b = (b); _a > _b ? _a : _b; })

Embedded statements are not allowed in constant expressions, such as the value of an enumer-

ation constant, the width of a bit field, or the initial value of a static variable.

If you don’t know the type of the operand, you can still do this, but you must use typeof (see

Section 4.6 [Typeof], page 93) or type naming (see Section 4.5 [Naming Types], page 93).

4.2 Locally Declared Labels

Each statement expression is a scope in which local labels can be declared. A local label is

simply an identifier; you can jump to it with an ordinary goto statement, but only from within the

statement expression it belongs to.

A local label declaration looks like this:

__label__ label;

or

__label__ label1, label2, . . .;

Local label declarations must come at the beginning of the statement expression, right after the

‘({’, before any ordinary declarations.

The label declaration defines the label name, but does not define the label itself. You must do

this in the usual way, with label:, within the statements of the statement expression.

Chapter 4: GNU Extensions to the C Language 89

The local label feature is useful because statement expressions are often used in macros. If the

macro contains nested loops, a goto can be useful for breaking out of them. However, an ordinary

label whose scope is the whole function cannot be used: if the macro can be expanded several

times in one function, the label will be multiply defined in that function. A local label avoids this

problem. For example:

#define SEARCH(array, target) \
({ \
__label__ found; \
typeof (target) _SEARCH_target = (target); \
typeof (*(array)) *_SEARCH_array = (array); \
int i, j; \
int value; \
for (i = 0; i < max; i++) \

for (j = 0; j < max; j++) \
if (_SEARCH_array[i][j] == _SEARCH_target) \

{ value = i; goto found; } \
value = -1; \
found: \
value; \

})

4.3 Labels as Values

You can get the address of a label defined in the current function (or a containing function)

with the unary operator ‘&&’. The value has type void *. This value is a constant and can be used

wherever a constant of that type is valid. For example:

void *ptr;
. . .

ptr = &&foo;

To use these values, you need to be able to jump to one. This is done with the computed goto

statement1, goto *exp;. For example,

1 The analogous feature in Fortran is called an assigned goto, but that name seems inappropriate

in C, where one can do more than simply store label addresses in label variables.

90 Using and Porting GNU CC

goto *ptr;

Any expression of type void * is allowed.

One way of using these constants is in initializing a static array that will serve as a jump table:

static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:

goto *array[i];

Note that this does not check whether the subscript is in bounds—array indexing in C never does

that.

Such an array of label values serves a purpose much like that of the switch statement. The

switch statement is cleaner, so use that rather than an array unless the problem does not fit a

switch statement very well.

Another use of label values is in an interpreter for threaded code. The labels within the inter-

preter function can be stored in the threaded code for super-fast dispatching.

You can use this mechanism to jump to code in a different function. If you do that, totally

unpredictable things will happen. The best way to avoid this is to store the label address only in

automatic variables and never pass it as an argument.

4.4 Nested Functions

A nested function is a function defined inside another function. The nested function’s name is

local to the block where it is defined. For example, here we define a nested function named square,

and call it twice:

foo (double a, double b)

Chapter 4: GNU Extensions to the C Language 91

{
double square (double z) { return z * z; }

return square (a) + square (b);
}

The nested function can access all the variables of the containing function that are visible at the

point of its definition. This is called lexical scoping. For example, here we show a nested function

which uses an inherited variable named offset:

bar (int *array, int offset, int size)
{
int access (int *array, int index)

{ return array[index + offset]; }
int i;
. . .

for (i = 0; i < size; i++)
. . . access (array, i) . . .

}

It is possible to call the nested function from outside the scope of its name by storing its address

or passing the address to another function:

hack (int *array, int size)
{
void store (int index, int value)

{ array[index] = value; }

intermediate (store, size);
}

Here, the function intermediate receives the address of store as an argument. If intermediate

calls store, the arguments given to store are used to store into array. But this technique works

only so long as the containing function (hack, in this example) does not exit. If you try to call

the nested function through its address after the containing function has exited, all hell will break

loose.

GNU CC implements taking the address of a nested function using a technique called trampo-

lines. A paper describing them is available from ‘maya.idiap.ch’ in the file ‘pub/tmb/usenix88-lexic.ps.Z’.

92 Using and Porting GNU CC

A nested function can jump to a label inherited from a containing function, provided the label

was explicitly declared in the containing function (see Section 4.2 [Local Labels], page 88). Such a

jump returns instantly to the containing function, exiting the nested function which did the goto

and any intermediate functions as well. Here is an example:

bar (int *array, int offset, int size)
{
__label__ failure;
int access (int *array, int index)

{
if (index > size)

goto failure;
return array[index + offset];

}
int i;
. . .

for (i = 0; i < size; i++)
. . . access (array, i) . . .

. . .

return 0;

/* Control comes here from access
if it detects an error. */

failure:
return -1;

}

A nested function always has internal linkage. Declaring one with extern is erroneous. If you

need to declare the nested function before its definition, use auto (which is otherwise meaningless

for function declarations).

bar (int *array, int offset, int size)
{
__label__ failure;
auto int access (int *, int);
. . .

int access (int *array, int index)
{
if (index > size)

goto failure;
return array[index + offset];

}
. . .

}

Chapter 4: GNU Extensions to the C Language 93

4.5 Naming an Expression’s Type

You can give a name to the type of an expression using a typedef declaration with an initializer.

Here is how to define name as a type name for the type of exp:

typedef name = exp;

This is useful in conjunction with the statements-within-expressions feature. Here is how the

two together can be used to define a safe “maximum” macro that operates on any arithmetic type:

#define max(a,b) \
({typedef _ta = (a), _tb = (b); \

_ta _a = (a); _tb _b = (b); \
_a > _b ? _a : _b; })

The reason for using names that start with underscores for the local variables is to avoid conflicts

with variable names that occur within the expressions that are substituted for a and b. Eventually

we hope to design a new form of declaration syntax that allows you to declare variables whose

scopes start only after their initializers; this will be a more reliable way to prevent such conflicts.

4.6 Referring to a Type with typeof

Another way to refer to the type of an expression is with typeof. The syntax of using of

this keyword looks like sizeof, but the construct acts semantically like a type name defined with

typedef.

There are two ways of writing the argument to typeof: with an expression or with a type. Here

is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of functions; the type described is that of the values of the functions.

Here is an example with a typename as the argument:

94 Using and Porting GNU CC

typeof (int *)

Here the type described is that of pointers to int.

If you are writing a header file that must work when included in ANSI C programs, write

__typeof__ instead of typeof. See Section 4.30 [Alternate Keywords], page 121.

A typeof-construct can be used anywhere a typedef name could be used. For example, you can

use it in a declaration, in a cast, or inside of sizeof or typeof.

• This declares y with the type of what x points to.

typeof (*x) y;

• This declares y as an array of such values.

typeof (*x) y[4];

• This declares y as an array of pointers to characters:

typeof (typeof (char *)[4]) y;

It is equivalent to the following traditional C declaration:

char *y[4];

To see the meaning of the declaration using typeof, and why it might be a useful way to write,

let’s rewrite it with these macros:

#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:

array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of 4 pointers to char.

4.7 Generalized Lvalues

Compound expressions, conditional expressions and casts are allowed as lvalues provided their

operands are lvalues. This means that you can take their addresses or store values into them.

For example, a compound expression can be assigned, provided the last expression in the se-

quence is an lvalue. These two expressions are equivalent:

Chapter 4: GNU Extensions to the C Language 95

(a, b) += 5
a, (b += 5)

Similarly, the address of the compound expression can be taken. These two expressions are

equivalent:

&(a, b)
a, &b

A conditional expression is a valid lvalue if its type is not void and the true and false branches

are both valid lvalues. For example, these two expressions are equivalent:

(a ? b : c) = 5
(a ? b = 5 : (c = 5))

A cast is a valid lvalue if its operand is an lvalue. A simple assignment whose left-hand side is a

cast works by converting the right-hand side first to the specified type, then to the type of the inner

left-hand side expression. After this is stored, the value is converted back to the specified type to

become the value of the assignment. Thus, if a has type char *, the following two expressions are

equivalent:

(int)a = 5
(int)(a = (char *)(int)5)

An assignment-with-arithmetic operation such as ‘+=’ applied to a cast performs the arithmetic

using the type resulting from the cast, and then continues as in the previous case. Therefore, these

two expressions are equivalent:

(int)a += 5
(int)(a = (char *)(int) ((int)a + 5))

You cannot take the address of an lvalue cast, because the use of its address would not work out

coherently. Suppose that &(int)f were permitted, where f has type float. Then the following

statement would try to store an integer bit-pattern where a floating point number belongs:

96 Using and Porting GNU CC

*&(int)f = 1;

This is quite different from what (int)f = 1 would do—that would convert 1 to floating point

and store it. Rather than cause this inconsistency, we think it is better to prohibit use of ‘&’ on a

cast.

If you really do want an int * pointer with the address of f, you can simply write (int *)&f.

4.8 Conditional Expressions with Omitted Operands

The middle operand in a conditional expression may be omitted. Then if the first operand is

nonzero, its value is the value of the conditional expression.

Therefore, the expression

x ? : y

has the value of x if that is nonzero; otherwise, the value of y.

This example is perfectly equivalent to

x ? x : y

In this simple case, the ability to omit the middle operand is not especially useful. When it

becomes useful is when the first operand does, or may (if it is a macro argument), contain a side

effect. Then repeating the operand in the middle would perform the side effect twice. Omitting the

middle operand uses the value already computed without the undesirable effects of recomputing it.

4.9 Double-Word Integers

GNU C supports data types for integers that are twice as long as long int. Simply write long

long int for a signed integer, or unsigned long long int for an unsigned integer.

Chapter 4: GNU Extensions to the C Language 97

You can use these types in arithmetic like any other integer types. Addition, subtraction, and

bitwise boolean operations on these types are open-coded on all types of machines. Multiplication

is open-coded if the machine supports fullword-to-doubleword a widening multiply instruction.

Division and shifts are open-coded only on machines that provide special support. The operations

that are not open-coded use special library routines that come with GNU CC.

There may be pitfalls when you use long long types for function arguments, unless you declare

function prototypes. If a function expects type int for its argument, and you pass a value of type

long long int, confusion will result because the caller and the subroutine will disagree about the

number of bytes for the argument. Likewise, if the function expects long long int and you pass

int. The best way to avoid such problems is to use prototypes.

4.10 Arrays of Length Zero

Zero-length arrays are allowed in GNU C. They are very useful as the last element of a structure

which is really a header for a variable-length object:

struct line {
int length;
char contents[0];

};

{
struct line *thisline = (struct line *)

malloc (sizeof (struct line) + this_length);
thisline->length = this_length;

}

In standard C, you would have to give contents a length of 1, which means either you waste

space or complicate the argument to malloc.

4.11 Arrays of Variable Length

Variable-length automatic arrays are allowed in GNU C. These arrays are declared like any other

automatic arrays, but with a length that is not a constant expression. The storage is allocated at

the point of declaration and deallocated when the brace-level is exited. For example:

98 Using and Porting GNU CC

FILE *
concat_fopen (char *s1, char *s2, char *mode)
{
char str[strlen (s1) + strlen (s2) + 1];
strcpy (str, s1);
strcat (str, s2);
return fopen (str, mode);

}

Jumping or breaking out of the scope of the array name deallocates the storage. Jumping into

the scope is not allowed; you get an error message for it.

You can use the function alloca to get an effect much like variable-length arrays. The function

alloca is available in many other C implementations (but not in all). On the other hand, variable-

length arrays are more elegant.

There are other differences between these two methods. Space allocated with alloca exists until

the containing function returns. The space for a variable-length array is deallocated as soon as the

array name’s scope ends. (If you use both variable-length arrays and alloca in the same function,

deallocation of a variable-length array will also deallocate anything more recently allocated with

alloca.)

You can also use variable-length arrays as arguments to functions:

struct entry
tester (int len, char data[len][len])
{

. . .

}

The length of an array is computed once when the storage is allocated and is remembered for

the scope of the array in case you access it with sizeof.

If you want to pass the array first and the length afterward, you can use a forward declaration

in the parameter list—another GNU extension.

struct entry
tester (int len; char data[len][len], int len)

Chapter 4: GNU Extensions to the C Language 99

{
. . .

}

The ‘int len’ before the semicolon is a parameter forward declaration, and it serves the purpose

of making the name len known when the declaration of data is parsed.

You can write any number of such parameter forward declarations in the parameter list. They

can be separated by commas or semicolons, but the last one must end with a semicolon, which

is followed by the “real” parameter declarations. Each forward declaration must match a “real”

declaration in parameter name and data type.

4.12 Macros with Variable Numbers of Arguments

In GNU C, a macro can accept a variable number of arguments, much as a function can. The

syntax for defining the macro looks much like that used for a function. Here is an example:

#define eprintf(format, args...) \
fprintf (stderr, format, ## args)

Here args is a rest argument: it takes in zero or more arguments, as many as the call contains.

All of them plus the commas between them form the value of args, which is substituted into the

macro body where args is used. Thus, we have these expansions:

eprintf ("%s:%d: ", input_file_name, line_number)
7→
fprintf (stderr, "%s:%d: ", input_file_name, line_number)

Note that the comma after the string constant comes from the definition of eprintf, whereas the

last comma comes from the value of args.

The reason for using ‘##’ is to handle the case when args matches no arguments at all. In

this case, args has an empty value. In this case, the second comma in the definition becomes an

embarrassment: if it got through to the expansion of the macro, we would get something like this:

100 Using and Porting GNU CC

fprintf (stderr, "success!\n",)

which is invalid C syntax. ‘##’ gets rid of the comma, so we get the following instead:

fprintf (stderr, "success!\n")

This is a special feature of the GNU C preprocessor: ‘##’ adjacent to a rest argument discards

the token on the other side of the ‘##’, if the rest argument value is empty.

4.13 Non-Lvalue Arrays May Have Subscripts

Subscripting is allowed on arrays that are not lvalues, even though the unary ‘&’ operator is not.

For example, this is valid in GNU C though not valid in other C dialects:

struct foo {int a[4];};

struct foo f();

bar (int index)
{
return f().a[index];

}

4.14 Arithmetic on void- and Function-Pointers

In GNU C, addition and subtraction operations are supported on pointers to void and on

pointers to functions. This is done by treating the size of a void or of a function as 1.

A consequence of this is that sizeof is also allowed on void and on function types, and returns

1.

The option ‘-Wpointer-arith’ requests a warning if these extensions are used.

Chapter 4: GNU Extensions to the C Language 101

4.15 Non-Constant Initializers

The elements of an aggregate initializer for an automatic variable are not required to be constant

expressions in GNU C. Here is an example of an initializer with run-time varying elements:

foo (float f, float g)
{
float beat_freqs[2] = { f-g, f+g };
. . .

}

4.16 Constructor Expressions

GNU C supports constructor expressions. A constructor looks like a cast containing an initial-

izer. Its value is an object of the type specified in the cast, containing the elements specified in the

initializer.

Usually, the specified type is a structure. Assume that struct foo and structure are declared

as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a constructor:

structure = ((struct foo) {x + y, ’a’, 0});

This is equivalent to writing the following:

{
struct foo temp = {x + y, ’a’, 0};
structure = temp;

}

102 Using and Porting GNU CC

You can also construct an array. If all the elements of the constructor are (made up of) simple

constant expressions, suitable for use in initializers, then the constructor is an lvalue and can be

coerced to a pointer to its first element, as shown here:

char **foo = (char *[]) { "x", "y", "z" };

Array constructors whose elements are not simple constants are not very useful, because the

constructor is not an lvalue. There are only two valid ways to use it: to subscript it, or initialize

an array variable with it. The former is probably slower than a switch statement, while the latter

does the same thing an ordinary C initializer would do. Here is an example of subscripting an array

constructor:

output = ((int[]) { 2, x, 28 }) [input];

Constructor expressions for scalar types and union types are is also allowed, but then the

constructor expression is equivalent to a cast.

4.17 Labeled Elements in Initializers

Standard C requires the elements of an initializer to appear in a fixed order, the same as the

order of the elements in the array or structure being initialized.

In GNU C you can give the elements in any order, specifying the array indices or structure field

names they apply to.

To specify an array index, write ‘[index]’ before the element value. For example,

int a[6] = { [4] 29, [2] 15 };

is equivalent to

int a[6] = { 0, 0, 15, 0, 29, 0 };

Chapter 4: GNU Extensions to the C Language 103

The index values must be constant expressions, even if the array being initialized is automatic.

In a structure initializer, specify the name of a field to initialize with ‘fieldname:’ before the

element value. For example, given the following structure,

struct point { int x, y; };

the following initialization

struct point p = { y: yvalue, x: xvalue };

is equivalent to

struct point p = { xvalue, yvalue };

You can also use an element label when initializing a union, to specify which element of the

union should be used. For example,

union foo { int i; double d; };

union foo f = { d: 4 };

will convert 4 to a double to store it in the union using the second element. By contrast, casting

4 to type union foo would store it into the union as the integer i, since it is an integer. (See

Section 4.19 [Cast to Union], page 105.)

You can combine this technique of naming elements with ordinary C initialization of successive

elements. Each initializer element that does not have a label applies to the next consecutive element

of the array or structure. For example,

int a[6] = { [1] v1, v2, [4] v4 };

104 Using and Porting GNU CC

is equivalent to

int a[6] = { 0, v1, v2, 0, v4, 0 };

Labeling the elements of an array initializer is especially useful when the indices are characters

or belong to an enum type. For example:

int whitespace[256]
= { [’ ’] 1, [’\t’] 1, [’\h’] 1,

[’\f’] 1, [’\n’] 1, [’\r’] 1 };

4.18 Case Ranges

You can specify a range of consecutive values in a single case label, like this:

case low ... high:

This has the same effect as the proper number of individual case labels, one for each integer value

from low to high, inclusive.

This feature is especially useful for ranges of ASCII character codes:

case ’A’ ... ’Z’:

Be careful: Write spaces around the ..., for otherwise it may be parsed wrong when you use

it with integer values. For example, write this:

case 1 ... 5:

rather than this:

case 1...5:

Chapter 4: GNU Extensions to the C Language 105

4.19 Cast to a Union Type

A cast to union type is like any other cast, except that the type specified is a union type. You

can specify the type either with union tag or with a typedef name.

The types that may be cast to the union type are those of the members of the union. Thus,

given the following union and variables:

union foo { int i; double d; };
int x;
double y;

both x and y can be cast to type union foo.

Using the cast as the right-hand side of an assignment to a variable of union type is equivalent

to storing in a member of the union:

union foo u;
. . .

u = (union foo) x ≡ u.i = x
u = (union foo) y ≡ u.d = y

You can also use the union cast as a function argument:

void hack (union foo);
. . .

hack ((union foo) x);

4.20 Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your program which help the

compiler optimize function calls.

A few standard library functions, such as abort and exit, cannot return. GNU CC knows this

automatically. Some programs define their own functions that never return. You can declare them

volatile to tell the compiler this fact. For example,

106 Using and Porting GNU CC

extern void volatile fatal ();

void
fatal (. . .)
{

. . . /* Print error message. */ . . .

exit (1);
}

The volatile keyword tells the compiler to assume that fatal cannot return. This makes

slightly better code, but more importantly it helps avoid spurious warnings of uninitialized variables.

It does not make sense for a volatile function to have a return type other than void.

Many functions do not examine any values except their arguments, and have no effects except

the return value. Such a function can be subject to common subexpression elimination and loop

optimization just as an arithmetic operator would be. These functions should be declared const.

For example,

extern int const square ();

says that the hypothetical function square is safe to call fewer times than the program says.

Note that a function that has pointer arguments and examines the data pointed to must not be

declared const. Likewise, a function that calls a non-const function usually must not be const.

It does not make sense for a const function to return void.

We recommend placing the keyword const after the function’s return type. It makes no differ-

ence in the example above, but when the return type is a pointer, it is the only way to make the

function itself const. For example,

const char *mincp (int);

says that mincp returns const char *—a pointer to a const object. To declare mincp const, you

must write this:

Chapter 4: GNU Extensions to the C Language 107

char * const mincp (int);

Some people object to this feature, suggesting that ANSI C’s #pragma should be used instead.

There are two reasons for not doing this.

1. It is impossible to generate #pragma commands from a macro.

2. The #pragma command is just as likely as these keywords to mean something else in another

compiler.

These two reasons apply to almost any application that might be proposed for #pragma. It is

basically a mistake to use #pragma for anything.

The keyword __attribute__ allows you to specify special attributes when making a declaration.

This keyword is followed by an attribute specification inside double parentheses. One attribute,

format, is currently defined for functions. Others are implemented for variables and structure fields

(see Section 4.20 [Function Attributes], page 105).

format (archetype, string-index, first-to-check)

The format attribute specifies that a function takes printf or scanf style arguments

which should be type-checked against a format string. For example, the declaration:

extern int
my_printf (void *my_object, const char *my_format, ...)

__attribute__ ((format (printf, 2, 3)));

causes the compiler to check the arguments in calls to my_printf for consistency with

the printf style format string argument my_format.

The parameter archetype determines how the format string is interpreted, and should

be either printf or scanf. The parameter string-index specifies which argument is

the format string argument (starting from 1), while first-to-check is the number of the

first argument to check against the format string. For functions where the arguments

are not available to be checked (such as vprintf), specify the third parameter as zero.

In this case the compiler only checks the format string for consistency.

In the example above, the format string (my_format) is the second argument of the

function my_print, and the arguments to check start with the third argument, so the

correct parameters for the format attribute are 2 and 3.

The format attribute allows you to identify your own functions which take format

strings as arguments, so that GNU CC can check the calls to these functions for errors.

108 Using and Porting GNU CC

The compiler always checks formats for the ANSI library functions printf, fprintf,

sprintf, scanf, fscanf, sscanf, vprintf, vfprintf and vsprintf whenever such

warnings are requested (using ‘-Wformat’), so there is no need to modify the header

file ‘stdio.h’.

4.21 Prototypes and Old-Style Function Definitions

GNU C extends ANSI C to allow a function prototype to override a later old-style non-prototype

definition. Consider the following example:

/* Use prototypes unless the compiler is old-fashioned. */
#if __STDC__
#define P(x) (x)
#else
#define P(x) ()
#endif

/* Prototype function declaration. */
int isroot P((uid_t));

/* Old-style function definition. */
int
isroot (x) /* ??? lossage here ??? */

uid_t x;
{
return x == 0;

}

Suppose the type uid_t happens to be short. ANSI C does not allow this example, because

subword arguments in old-style non-prototype definitions are promoted. Therefore in this example

the function definition’s argument is really an int, which does not match the prototype argument

type of short.

This restriction of ANSI C makes it hard to write code that is portable to traditional C compilers,

because the programmer does not know whether the uid_t type is short, int, or long. Therefore,

in cases like these GNU C allows a prototype to override a later old-style definition. More precisely,

in GNU C, a function prototype argument type overrides the argument type specified by a later

old-style definition if the former type is the same as the latter type before promotion. Thus in

GNU C the above example is equivalent to the following:

Chapter 4: GNU Extensions to the C Language 109

int isroot (uid_t);

int
isroot (uid_t x)
{
return x == 0;

}

4.22 Dollar Signs in Identifier Names

In GNU C, you may use dollar signs in identifier names. This is because many traditional C

implementations allow such identifiers.

On some machines, dollar signs are allowed in identifiers if you specify ‘-traditional’. On a

few systems they are allowed by default, even if you do not use ‘-traditional’. But they are never

allowed if you specify ‘-ansi’.

There are certain ANSI C programs (obscure, to be sure) that would compile incorrectly if dollar

signs were permitted in identifiers. For example:

#define foo(a) #a
#define lose(b) foo (b)
#define test$
lose (test)

4.23 The Character ESC in Constants

You can use the sequence ‘\e’ in a string or character constant to stand for the ASCII character

ESC.

4.24 Inquiring on Alignment of Types or Variables

The keyword __alignof__ allows you to inquire about how an object is aligned, or the minimum

alignment usually required by a type. Its syntax is just like sizeof.

110 Using and Porting GNU CC

For example, if the target machine requires a double value to be aligned on an 8-byte boundary,

then __alignof__ (double) is 8. This is true on many RISC machines. On more traditional

machine designs, __alignof__ (double) is 4 or even 2.

Some machines never actually require alignment; they allow reference to any data type even at

an odd addresses. For these machines, __alignof__ reports the recommended alignment of a type.

When the operand of __alignof__ is an lvalue rather than a type, the value is the largest

alignment that the lvalue is known to have. It may have this alignment as a result of its data type,

or because it is part of a structure and inherits alignment from that structure. For example, after

this declaration:

struct foo { int x; char y; } foo1;

the value of __alignof__ (foo1.y) is probably 2 or 4, the same as __alignof__ (int), even

though the data type of foo1.y does not itself demand any alignment.

A related feature which lets you specify the alignment of an object is __attribute__ ((aligned

(alignment))); see the following section.

4.25 Specifying Attributes of Variables

The keyword __attribute__ allows you to specify special attributes of variables or structure

fields. This keyword is followed by an attribute specification inside double parentheses. Four

attributes are currently defined: aligned, format, mode and packed. format is used for functions,

and thus not documented here; see Section 4.20 [Function Attributes], page 105.

aligned (alignment)

This attribute specifies the alignment of the variable or structure field, measured in

bytes. For example, the declaration:

int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a 16-byte boundary. On a

68040, this could be used in conjunction with an asm expression to access the move16

instruction which requires 16-byte aligned operands.

You can also specify the alignment of structure fields. For example, to create a double-

word aligned int pair, you could write:

Chapter 4: GNU Extensions to the C Language 111

struct foo { int x[2] __attribute__ ((aligned (8))); };

This is an alternative to creating a union with a double member that forces the union

to be double-word aligned.

It is not possible to specify the alignment of functions; the alignment of functions is

determined by the machine’s requirements and cannot be changed. You cannot specify

alignment for a typedef name because such a name is just an alias, not a distinct type.

The linker of your operating system imposes a maximum alignment. If the linker

aligns each object file on a four byte boundary, then it is beyond the compiler’s power

to cause anything to be aligned to a larger boundary than that. For example, if the

linker happens to put this object file at address 136 (eight more than a multiple of

64), then the compiler cannot guarantee an alignment of more than 8 just by aligning

variables in the object file.

mode (mode)

This attribute specifies the data type for the declaration—whichever type corresponds

to the mode mode. This in effect lets you request an integer or floating point type

according to its width.

packed The packed attribute specifies that a variable or structure field should have the smallest

possible alignment—one byte for a variable, and one bit for a field, unless you specify

a larger value with the aligned attribute.

4.26 An Inline Function is As Fast As a Macro

By declaring a function inline, you can direct GNU CC to integrate that function’s code into

the code for its callers. This makes execution faster by eliminating the function-call overhead;

in addition, if any of the actual argument values are constant, their known values may permit

simplifications at compile time so that not all of the inline function’s code needs to be included.

Inlining of functions is an optimization and it really “works” only in optimizing compilation. If you

don’t use ‘-O’, no function is really inline.

To declare a function inline, use the inline keyword in its declaration, like this:

inline int
inc (int *a)
{
(*a)++;

}

112 Using and Porting GNU CC

(If you are writing a header file to be included in ANSI C programs, write __inline__ instead

of inline. See Section 4.30 [Alternate Keywords], page 121.)

You can also make all “simple enough” functions inline with the option ‘-finline-functions’.

Note that certain usages in a function definition can make it unsuitable for inline substitution.

When a function is both inline and static, if all calls to the function are integrated into the

caller, and the function’s address is never used, then the function’s own assembler code is never

referenced. In this case, GNU CC does not actually output assembler code for the function, unless

you specify the option ‘-fkeep-inline-functions’. Some calls cannot be integrated for various

reasons (in particular, calls that precede the function’s definition cannot be integrated, and neither

can recursive calls within the definition). If there is a nonintegrated call, then the function is

compiled to assembler code as usual. The function must also be compiled as usual if the program

refers to its address, because that can’t be inlined.

When an inline function is not static, then the compiler must assume that there may be calls

from other source files; since a global symbol can be defined only once in any program, the function

must not be defined in the other source files, so the calls therein cannot be integrated. Therefore,

a non-static inline function is always compiled on its own in the usual fashion.

If you specify both inline and extern in the function definition, then the definition is used

only for inlining. In no case is the function compiled on its own, not even if you refer to its address

explicitly. Such an address becomes an external reference, as if you had only declared the function,

and had not defined it.

This combination of inline and extern has almost the effect of a macro. The way to use it

is to put a function definition in a header file with these keywords, and put another copy of the

definition (lacking inline and extern) in a library file. The definition in the header file will cause

most calls to the function to be inlined. If any uses of the function remain, they will refer to the

single copy in the library.

GNU C does not inline any functions when not optimizing. It is not clear whether it is better

to inline or not, in this case, but we found that a correct implementation when not optimizing was

difficult. So we did the easy thing, and turned it off.

Chapter 4: GNU Extensions to the C Language 113

4.27 Assembler Instructions with C Expression Operands

In an assembler instruction using asm, you can now specify the operands of the instruction using

C expressions. This means no more guessing which registers or memory locations will contain the

data you want to use.

You must specify an assembler instruction template much like what appears in a machine de-

scription, plus an operand constraint string for each operand.

For example, here is how to use the 68881’s fsinx instruction:

asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

Here angle is the C expression for the input operand while result is that of the output operand.

Each has ‘"f"’ as its operand constraint, saying that a floating point register is required. The ‘=’

in ‘=f’ indicates that the operand is an output; all output operands’ constraints must use ‘=’. The

constraints use the same language used in the machine description (see Section 13.6 [Constraints],

page 218).

Each operand is described by an operand-constraint string followed by the C expression in

parentheses. A colon separates the assembler template from the first output operand, and another

separates the last output operand from the first input, if any. Commas separate output operands

and separate inputs. The total number of operands is limited to ten or to the maximum number

of operands in any instruction pattern in the machine description, whichever is greater.

If there are no output operands, and there are input operands, then there must be two consec-

utive colons surrounding the place where the output operands would go.

Output operand expressions must be lvalues; the compiler can check this. The input operands

need not be lvalues. The compiler cannot check whether the operands have data types that are

reasonable for the instruction being executed. It does not parse the assembler instruction template

and does not know what it means, or whether it is valid assembler input. The extended asm feature

is most often used for machine instructions that the compiler itself does not know exist.

The output operands must be write-only; GNU CC will assume that the values in these operands

before the instruction are dead and need not be generated. Extended asm does not support input-

114 Using and Porting GNU CC

output or read-write operands. For this reason, the constraint character ‘+’, which indicates such

an operand, may not be used.

When the assembler instruction has a read-write operand, or an operand in which only some

of the bits are to be changed, you must logically split its function into two separate operands, one

input operand and one write-only output operand. The connection between them is expressed by

constraints which say they need to be in the same location when the instruction executes. You

can use the same C expression for both operands, or different expressions. For example, here we

write the (fictitious) ‘combine’ instruction with bar as its read-only source operand and foo as its

read-write destination:

asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));

The constraint ‘"0"’ for operand 1 says that it must occupy the same location as operand 0. A

digit in constraint is allowed only in an input operand, and it must refer to an output operand.

Only a digit in the constraint can guarantee that one operand will be in the same place as

another. The mere fact that foo is the value of both operands is not enough to guarantee that

they will be in the same place in the generated assembler code. The following would not work:

asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));

Various optimizations or reloading could cause operands 0 and 1 to be in different registers;

GNU CC knows no reason not to do so. For example, the compiler might find a copy of the value

of foo in one register and use it for operand 1, but generate the output operand 0 in a different

register (copying it afterward to foo’s own address). Of course, since the register for operand 1 is

not even mentioned in the assembler code, the result will not work, but GNU CC can’t tell that.

Some instructions clobber specific hard registers. To describe this, write a third colon after the

input operands, followed by the names of the clobbered hard registers (given as strings). Here is a

realistic example for the Vax:

asm volatile ("movc3 %0,%1,%2"
: /* no outputs */
: "g" (from), "g" (to), "g" (count)
: "r0", "r1", "r2", "r3", "r4", "r5");

Chapter 4: GNU Extensions to the C Language 115

If you refer to a particular hardware register from the assembler code, then you will probably

have to list the register after the third colon to tell the compiler that the register’s value is modified.

In many assemblers, the register names begin with ‘%’; to produce one ‘%’ in the assembler code,

you must write ‘%%’ in the input.

If your assembler instruction can alter the condition code register, add ‘cc’ to the list of clobbered

registers. GNU CC on some machines represents the condition codes as a specific hardware register;

‘cc’ serves to name this register. On other machines, the condition code is handled differently, and

specifying ‘cc’ has no effect. But it is valid no matter what the machine.

If your assembler instruction modifies memory in an unpredicable fashion, add ‘memory’ to the

list of clobbered registers. This will cause GNU CC to not keep memory values cached in registers

across the assembler instruction.

You can put multiple assembler instructions together in a single asm template, separated either

with newlines (written as ‘\n’) or with semicolons if the assembler allows such semicolons. The

GNU assembler allows semicolons and all Unix assemblers seem to do so. The input operands

are guaranteed not to use any of the clobbered registers, and neither will the output operands’

addresses, so you can read and write the clobbered registers as many times as you like. Here is

an example of multiple instructions in a template; it assumes that the subroutine _foo accepts

arguments in registers 9 and 10:

asm ("movl %0,r9;movl %1,r10;call _foo"
: /* no outputs */
: "g" (from), "g" (to)
: "r9", "r10");

Unless an output operand has the ‘&’ constraint modifier, GNU CC may allocate it in the same

register as an unrelated input operand, on the assumption that the inputs are consumed before

the outputs are produced. This assumption may be false if the assembler code actually consists of

more than one instruction. In such a case, use ‘&’ for each output operand that may not overlap

an input. See Section 13.6.4 [Modifiers], page 225.

If you want to test the condition code produced by an assembler instruction, you must include

a branch and a label in the asm construct, as follows:

asm ("clr %0;frob %1;beq 0f;mov #1,%0;0:"
: "g" (result)
: "g" (input));

116 Using and Porting GNU CC

This assumes your assembler supports local labels, as the GNU assembler and most Unix assemblers

do.

Usually the most convenient way to use these asm instructions is to encapsulate them in macros

that look like functions. For example,

#define sin(x) \
({ double __value, __arg = (x); \

asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
__value; })

Here the variable __arg is used to make sure that the instruction operates on a proper double

value, and to accept only those arguments x which can convert automatically to a double.

Another way to make sure the instruction operates on the correct data type is to use a cast in

the asm. This is different from using a variable __arg in that it converts more different types. For

example, if the desired type were int, casting the argument to int would accept a pointer with no

complaint, while assigning the argument to an int variable named __arg would warn about using

a pointer unless the caller explicitly casts it.

If an asm has output operands, GNU CC assumes for optimization purposes that the instruction

has no side effects except to change the output operands. This does not mean that instructions

with a side effect cannot be used, but you must be careful, because the compiler may eliminate

them if the output operands aren’t used, or move them out of loops, or replace two with one if they

constitute a common subexpression. Also, if your instruction does have a side effect on a variable

that otherwise appears not to change, the old value of the variable may be reused later if it happens

to be found in a register.

You can prevent an asm instruction from being deleted, moved significantly, or combined, by

writing the keyword volatile after the asm. For example:

#define set_priority(x) \
asm volatile ("set_priority %0": /* no outputs */ : "g" (x))

An instruction without output operands will not be deleted or moved significantly, regardless, unless

it is unreachable.

Chapter 4: GNU Extensions to the C Language 117

Note that even a volatile asm instruction can be moved in ways that appear insignificant to the

compiler, such as across jump instructions. You can’t expect a sequence of volatile asm instructions

to remain perfectly consecutive. If you want consecutive output, use a single asm.

It is a natural idea to look for a way to give access to the condition code left by the assem-

bler instruction. However, when we attempted to implement this, we found no way to make it

work reliably. The problem is that output operands might need reloading, which would result in

additional following “store” instructions. On most machines, these instructions would alter the

condition code before there was time to test it. This problem doesn’t arise for ordinary “test” and

“compare” instructions because they don’t have any output operands.

If you are writing a header file that should be includable in ANSI C programs, write __asm__

instead of asm. See Section 4.30 [Alternate Keywords], page 121.

4.28 Controlling Names Used in Assembler Code

You can specify the name to be used in the assembler code for a C function or variable by

writing the asm (or __asm__) keyword after the declarator as follows:

int foo asm ("myfoo") = 2;

This specifies that the name to be used for the variable foo in the assembler code should be ‘myfoo’

rather than the usual ‘_foo’.

On systems where an underscore is normally prepended to the name of a C function or variable,

this feature allows you to define names for the linker that do not start with an underscore.

You cannot use asm in this way in a function definition; but you can get the same effect by

writing a declaration for the function before its definition and putting asm there, like this:

extern func () asm ("FUNC");

func (x, y)
int x, y;

. . .

118 Using and Porting GNU CC

It is up to you to make sure that the assembler names you choose do not conflict with any other

assembler symbols. Also, you must not use a register name; that would produce completely invalid

assembler code. GNU CC does not as yet have the ability to store static variables in registers.

Perhaps that will be added.

4.29 Variables in Specified Registers

GNU C allows you to put a few global variables into specified hardware registers. You can also

specify the register in which an ordinary register variable should be allocated.

• Global register variables reserve registers throughout the program. This may be useful in

programs such as programming language interpreters which have a couple of global variables

that are accessed very often.

• Local register variables in specific registers do not reserve the registers. The compiler’s data

flow analysis is capable of determining where the specified registers contain live values, and

where they are available for other uses.

These local variables are sometimes convenient for use with the extended asm feature (see

Section 4.27 [Extended Asm], page 113), if you want to write one output of the assembler

instruction directly into a particular register. (This will work provided the register you specify

fits the constraints specified for that operand in the asm.)

4.29.1 Defining Global Register Variables

You can define a global register variable in GNU C like this:

register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Choose a register which is normally

saved and restored by function calls on your machine, so that library routines will not clobber it.

Naturally the register name is cpu-dependent, so you would need to conditionalize your program

according to cpu type. The register a5 would be a good choice on a 68000 for a variable of pointer

type. On machines with register windows, be sure to choose a “global” register that is not affected

magically by the function call mechanism.

Chapter 4: GNU Extensions to the C Language 119

In addition, operating systems on one type of cpu may differ in how they name the registers;

then you would need additional conditionals. For example, some 68000 operating systems call this

register %a5.

Eventually there may be a way of asking the compiler to choose a register automatically, but

first we need to figure out how it should choose and how to enable you to guide the choice. No

solution is evident.

Defining a global register variable in a certain register reserves that register entirely for this use,

at least within the current compilation. The register will not be allocated for any other purpose

in the functions in the current compilation. The register will not be saved and restored by these

functions. Stores into this register are never deleted even if they would appear to be dead, but

references may be deleted or moved or simplified.

It is not safe to access the global register variables from signal handlers, or from more than one

thread of control, because the system library routines may temporarily use the register for other

things (unless you recompile them specially for the task at hand).

It is not safe for one function that uses a global register variable to call another such function

foo by way of a third function lose that was compiled without knowledge of this variable (i.e. in

a different source file in which the variable wasn’t declared). This is because lose might save the

register and put some other value there. For example, you can’t expect a global register variable

to be available in the comparison-function that you pass to qsort, since qsort might have put

something else in that register. (If you are prepared to recompile qsort with the same global

register variable, you can solve this problem.)

If you want to recompile qsort or other source files which do not actually use your global register

variable, so that they will not use that register for any other purpose, then it suffices to specify the

compiler option ‘-ffixed-reg’. You need not actually add a global register declaration to their

source code.

A function which can alter the value of a global register variable cannot safely be called from

a function compiled without this variable, because it could clobber the value the caller expects to

find there on return. Therefore, the function which is the entry point into the part of the program

that uses the global register variable must explicitly save and restore the value which belongs to

its caller.

On most machines, longjmp will restore to each global register variable the value it had at

the time of the setjmp. On some machines, however, longjmp will not change the value of global

120 Using and Porting GNU CC

register variables. To be portable, the function that called setjmp should make other arrangements

to save the values of the global register variables, and to restore them in a longjmp. This way, the

same thing will happen regardless of what longjmp does.

All global register variable declarations must precede all function definitions. If such a dec-

laration could appear after function definitions, the declaration would be too late to prevent the

register from being used for other purposes in the preceding functions.

Global register variables may not have initial values, because an executable file has no means

to supply initial contents for a register.

On the Sparc, there are reports that g3 . . . g7 are suitable registers, but certain library functions,

such as getwd, as well as the subroutines for division and remainder, modify g3 and g4. g1 and g2

are local temporaries.

On the 68000, a2 . . . a5 should be suitable, as should d2 . . . d7. Of course, it will not do to use

more than a few of those.

4.29.2 Specifying Registers for Local Variables

You can define a local register variable with a specified register like this:

register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Note that this is the same syntax used

for defining global register variables, but for a local variable it would appear within a function.

Naturally the register name is cpu-dependent, but this is not a problem, since specific regis-

ters are most often useful with explicit assembler instructions (see Section 4.27 [Extended Asm],

page 113). Both of these things generally require that you conditionalize your program according

to cpu type.

In addition, operating systems on one type of cpu may differ in how they name the registers;

then you would need additional conditionals. For example, some 68000 operating systems call this

register %a5.

Chapter 4: GNU Extensions to the C Language 121

Eventually there may be a way of asking the compiler to choose a register automatically, but

first we need to figure out how it should choose and how to enable you to guide the choice. No

solution is evident.

Defining such a register variable does not reserve the register; it remains available for other uses

in places where flow control determines the variable’s value is not live. However, these registers are

made unavailable for use in the reload pass. I would not be surprised if excessive use of this feature

leaves the compiler too few available registers to compile certain functions.

4.30 Alternate Keywords

The option ‘-traditional’ disables certain keywords; ‘-ansi’ disables certain others. This

causes trouble when you want to use GNU C extensions, or ANSI C features, in a general-purpose

header file that should be usable by all programs, including ANSI C programs and traditional

ones. The keywords asm, typeof and inline cannot be used since they won’t work in a program

compiled with ‘-ansi’, while the keywords const, volatile, signed, typeof and inline won’t

work in a program compiled with ‘-traditional’.

The way to solve these problems is to put ‘__’ at the beginning and end of each problematical

keyword. For example, use __asm__ instead of asm, __const__ instead of const, and __inline__

instead of inline.

Other C compilers won’t accept these alternative keywords; if you want to compile with another

compiler, you can define the alternate keywords as macros to replace them with the customary

keywords. It looks like this:

#ifndef __GNUC__
#define __asm__ asm
#endif

‘-pedantic’ causes warnings for many GNU C extensions. You can prevent such warnings

within one expression by writing __extension__ before the expression. __extension__ has no

effect aside from this.

122 Using and Porting GNU CC

4.31 Incomplete enum Types

You can define an enum tag without specifying its possible values. This results in an incomplete

type, much like what you get if you write struct foo without describing the elements. A later

declaration which does specify the possible values completes the type.

You can’t allocate variables or storage using the type while it is incomplete. However, you can

work with pointers to that type.

This extension may not be very useful, but it makes the handling of enum more consistent with

the way struct and union are handled.

Chapter 5: Known Causes of Trouble with GNU CC 123

5 Known Causes of Trouble with GNU CC

This section describes known problems that affect users of GNU CC. Most of these are not GNU

CC bugs per se—if they were, we would fix them. But the result for a user may be like the result

of a bug.

Some of these problems are due to bugs in other software, some are missing features that are

too much work to add, and some are places where people’s opinions differ as to what is best.

5.1 Actual Bugs We Haven’t Fixed Yet

• Loop unrolling doesn’t work properly for certain C++ programs. This is because of difficulty

in updating the debugging information within the loop being unrolled. We plan to revamp the

representation of debugging information so that this will work properly, but we have not done

this in version 2.3 because we don’t want to delay it any further.

5.2 Installation Problems

This is a list of problems (and some apparent problems which don’t really mean anything is

wrong) that show up during installation of GNU CC.

• On certain systems, defining certain environment variables such as CC can interfere with the

functioning of make.

• If you encounter seemingly strange errors when trying to build the compiler in a directory other

than the source directory, it could be because you have previously configured the compiler in

the source directory. Make sure you have done all the necessary preparations. See Section 3.1

[Other Dir], page 75.

• In previous versions of GNU CC, the gcc driver program looked for as and ld in various places

such as files beginning with ‘/usr/local/lib/gcc-’. GNU CC version 2 looks for them in the

directory ‘/usr/local/lib/gcc-lib/target/version’.

Thus, to use a version of as or ld that is not the system default, for example gas or GNU ld,

you must put them in that directory (or make links to them from that directory).

• Some commands executed when making the compiler may fail (return a non-zero status) and

be ignored by make. These failures, which are often due to files that were not found, are

expected, and can safely be ignored.

124 Using and Porting GNU CC

• It is normal to have warnings in compiling certain files about unreachable code and about

enumeration type clashes. These files’ names begin with ‘insn-’.

• Sometimes make recompiles parts of the compiler when installing the compiler. In one case,

this was traced down to a bug in make. Either ignore the problem or switch to GNU Make.

• On some 386 systems, building the compiler never finishes because enquire hangs due to

a hardware problem in the motherboard—it reports floating point exceptions to the kernel

incorrectly. You can install GNU CC except for ‘float.h’ by patching out the command

to run enquire. You may also be able to fix the problem for real by getting a replacement

motherboard. This problem was observed in Revision E of the Micronics motherboard, and is

fixed in Revision F.

• On some 386 systems, GNU CC crashes trying to compile ‘enquire.c’. This happens on

machines that don’t have a 387 FPU chip. On 386 machines, the system kernel is supposed to

emulate the 387 when you don’t have one. The crash is due to a bug in the emulator.

One of these systems is the Unix from Interactive Systems: 386/ix. On this system, an alternate

emulator is provided, and it does work. To use it, execute this command as super-user:

ln /etc/emulator.rel1 /etc/emulator

and then reboot the system. (The default emulator file remains present under the name

‘emulator.dflt’.)

If you have such a problem on the SCO system, try using ‘/etc/emulator.att’.

Another system which has this problem is Esix. We don’t know whether it has an alternate

emulator that works.

• Sometimes on a Sun 4 you may observe a crash in the program genflags or genoutput while

building GNU CC. This is said to be due to a bug in sh. You can probably get around it by

running genflags or genoutput manually and then retrying the make.

• If you use the 1.31 version of the MIPS assembler (such as was shipped with Ultrix 3.1), you will

need to use the -fno-delayed-branch switch when optimizing floating point code. Otherwise,

the assembler will complain when the GCC compiler fills a branch delay slot with a floating

point instruction, such as add.d.

• Users have reported some problems with version 2.0 of the MIPS compiler tools that were

shipped with Ultrix 4.1. Version 2.10 which came with Ultrix 4.2 seems to work fine.

• Some versions of the MIPS linker will issue an assertion failure when linking code that uses

alloca against shared libraries on RISC-OS 5.0, and DEC’s OSF/1 systems. This is a bug in

the linker, that is supposed to be fixed in future revisions. To protect against this, GCC passes

‘-non_shared’ to the linker unless you pass an explicit ‘-shared’ or ‘-call_shared’ switch.

• On System V release 3, you may get this error message while linking:

ld fatal: failed to write symbol name something
in strings table for file whatever

Chapter 5: Known Causes of Trouble with GNU CC 125

This indicates that the disk is full or your ULIMIT won’t allow the file to be as large as it

needs to be.

• On HP 9000 series 300 or 400 running HP-UX release 8.0, there is a bug in the assembler that

must be fixed before GNU CC can be built. This bug manifests itself during the first stage of

compilation, while building ‘libgcc2.a’:

_floatdisf
cc1: warning: ‘-g’ option not supported on this version of GCC
cc1: warning: ‘-g1’ option not supported on this version of GCC
./gcc: Internal compiler error: program as got fatal signal 11

A patched version of the assembler is available by anonymous ftp from altdorf.ai.mit.edu

as the file ‘archive/cph/hpux-8.0-assembler’. If you have HP software support, the patch

can also be obtained directly from HP, as described in the following note:

This is the patched assembler, to patch SR#1653-010439, where the assembler
aborts on floating point constants.

The bug is not really in the assembler, but in the shared library version of the
function “cvtnum(3c)”. The bug on “cvtnum(3c)” is SR#4701-078451. Anyway,
the attached assembler uses the archive library version of “cvtnum(3c)” and thus
does not exhibit the bug.

This patch is also known as PHCO 0800.

• Another assembler problem on the HP PA results in an error message like this while compiling

part of ‘libgcc2.a’:

as: /usr/tmp/cca08196.s @line#30 [err#1060]
Argument 1 or 3 in FARG upper

- lookahead = RTNVAL=GR

This happens because HP changed the assembler syntax after system release 8.02. GNU CC

assumes the newer syntax; if your assembler wants the older syntax, comment out this line in

the file ‘pa1-hpux.h’:

#define HP_FP_ARG_DESCRIPTOR_REVERSED

• Some versions of the Pyramid C compiler are reported to be unable to compile GNU CC. You

must use an older version of GNU CC for bootstrapping. One indication of this problem is if

you get a crash when GNU CC compiles the function muldi3 in file ‘libgcc2.c’.

You may be able to succeed by getting GNU CC version 1, installing it, and using it to compile

GNU CC version 2. The bug in the Pyramid C compiler does not seem to affect GNU CC

version 1.

• On the Tower models 4n0 and 6n0, by default a process is not allowed to have more than one

megabyte of memory. GNU CC cannot compile itself (or many other programs) with ‘-O’ in

that much memory.

To solve this problem, reconfigure the kernel adding the following line to the configuration file:

MAXUMEM = 4096

126 Using and Porting GNU CC

• On the Altos 3068, programs compiled with GNU CC won’t work unless you fix a kernel bug.

This happens using system versions V.2.2 1.0gT1 and V.2.2 1.0e and perhaps later versions as

well. See the file ‘README.ALTOS’.

• You will get several sorts of compilation and linking errors on the we32k if you don’t follow

the special instructions. See Section 3.8 [WE32K Install], page 83.

5.3 Cross-Compiler Problems

• Cross compilation can run into trouble for certain machines because some target machines’

assemblers require floating point numbers to be written as integer constants in certain contexts.

The compiler writes these integer constants by examining the floating point value as an integer

and printing that integer, because this is simple to write and independent of the details of the

floating point representation. But this does not work if the compiler is running on a different

machine with an incompatible floating point format, or even a different byte-ordering.

In addition, correct constant folding of floating point values requires representing them in the

target machine’s format. (The C standard does not quite require this, but in practice it is the

only way to win.)

It is now possible to overcome these problems by defining macros such as REAL_VALUE_TYPE.

But doing so is a substantial amount of work for each target machine. See Section 14.18

[Cross-compilation], page 347.

• At present, the program ‘mips-tfile’ which adds debug support to object files on MIPS

systems does not work in a cross compile environment.

5.4 Interoperation

This section lists various difficulties encountered in using GNU C or GNU C++ together with

other compilers or with the assemblers, linkers, libraries and debuggers on certain systems.

• GNU C normally compiles functions to return small structures and unions in registers. Most

other compilers arrange to return them just like larger structures and unions. This can lead to

trouble when you link together code compiled by different compilers. To avoid the problem,

you can use the option ‘-fpcc-struct-return’ when compiling with GNU CC.

• GNU C++ does not do name mangling in the same way as other C++ compilers. This means

that object files compiled with one compiler cannot be used with another.

Chapter 5: Known Causes of Trouble with GNU CC 127

GNU C++ also uses different techniques for arranging virtual function tables and the layout of

class instances. In general, therefore, linking code compiled with different C++ compilers does

not work.

• Older GDB versions sometimes fail to read the output of GNU CC version 2. If you have

trouble, get GDB version 4.4 or later.

• DBX rejects some files produced by GNU CC, though it accepts similar constructs in output

from PCC. Until someone can supply a coherent description of what is valid DBX input and

what is not, there is nothing I can do about these problems. You are on your own.

• The GNU assembler (GAS) does not support PIC. To generate PIC code, you must use some

other assembler, such as ‘/bin/as’.

• On some BSD systems including some versions of Ultrix, use of profiling causes static variable

destructors (currently used only in C++) not to be run.

• Use of ‘-I/usr/include’ may cause trouble.

Many systems come with header files that won’t work with GNU CC unless corrected by

fixincludes. The corrected header files go in a new directory; GNU CC searches this di-

rectory before ‘/usr/include’. If you use ‘-I/usr/include’, this tells GNU CC to search

‘/usr/include’ earlier on, before the corrected headers. The result is that you get the uncor-

rected header files.

Instead, you should use these options:

-I/usr/local/lib/gcc-lib/target/version/include -I/usr/include

• On a Sparc, GNU CC aligns all values of type double on an 8-byte boundary, and it expects

every double to be so aligned. The Sun compiler usually gives double values 8-byte alignment,

with one exception: function arguments of type double may not be aligned.

As a result, if a function compiled with Sun CC takes the address of an argument of type double

and passes this pointer of type double * to a function compiled with GNU CC, dereferencing

the pointer may cause a fatal signal.

One way to solve this problem is to compile your entire program with GNU CC. Another

solution is to modify the function that is compiled with Sun CC to copy the argument into

a local variable; local variables are always properly aligned. A third solution is to modify

the function that uses the pointer to dereference it via the following function access_double

instead of directly with ‘*’:

inline double
access_double (double *unaligned_ptr)
{
union d2i { double d; int i[2]; };

union d2i *p = (union d2i *) unaligned_ptr;
union d2i u;

u.i[0] = p->i[0];
u.i[1] = p->i[1];

128 Using and Porting GNU CC

return u.d;
}

Storing into the pointer can be done likewise with the same union.

• On a Sun, linking using GNU CC fails to find a shared library and reports that the library

doesn’t exist at all.

This happens if you are using the GNU linker, because it does only static linking and looks

only for unshared libraries. If you have a shared library with no unshared counterpart, the

GNU linker won’t find anything.

We hope to make a linker which supports Sun shared libraries, but please don’t ask when it

will be finished—we don’t know.

• Sun forgot to include a static version of ‘libdl.a’ with some versions of SunOS (mainly 4.1).

This results in undefined symbols when linking static binaries (that is, if you use ‘-static’).

If you see undefined symbols _dlclose, _dlsym or _dlopen when linking, compile and link

against the file ‘mit/util/misc/dlsym.c’ from the MIT version of X windows.

• On the HP PA machine, ADB sometimes fails to work on functions compiled with GNU CC.

Specifically, it fails to work on functions that use alloca or variable-size arrays. This is

because GNU CC doesn’t generate HP-UX unwind descriptors for such functions. It may even

be impossible to generate them.

• Debugging (‘-g’) is not supported on the HP PA machine, unless you use the preliminary GNU

tools (see Chapter 3 [Installation], page 65).

• The HP-UX linker has a bug which can cause programs which make use of const variables

to fail in unusual ways. If your program makes use of global const variables, we suggest you

compile with the following additional options:

-Dconst="" -D__const="" -D__const__="" -fwritable-strings

This will force the const variables into the DATA subspace which will avoid the linker bug.

Another option one might use to work around this problem is ‘-mkernel’. ‘-mkernel’ changes

how the address of variables is computed to a sequence less likely to tickle the HP-UX linker

bug.

We hope to work around this problem in GNU CC 2.4, if HP does not fix it.

• Taking the address of a label may generate errors from the HP-UX PA assembler. GAS for

the PA does not have this problem.

• GNU CC produced code will not yet link against HP-UX 8.0 shared libraries. We expect to

fix this problem in GNU CC 2.4.

• The current version of the assembler (‘/bin/as’) for the RS/6000 has certain problems that

prevent the ‘-g’ option in GCC from working.

IBM has produced a fixed version of the assembler. The replacement assembler is not a

standard component of either AIX 3.1.5 or AIX 3.2, but is expected to become standard in a

Chapter 5: Known Causes of Trouble with GNU CC 129

future distribution. This assembler is available from IBM as APAR IX22829. Yet more bugs

have been fixed in a newer assembler, which will shortly be available as APAR IX26107. See

the file ‘README.RS6000’ for more details on these assemblers.

• On the IBM RS/6000, compiling code of the form

extern int foo;

. . . foo . . .

static int foo;

will cause the linker to report an undefined symbol foo. Although this behavior differs from

most other systems, it is not a bug because redefining an extern variable as static is undefined

in ANSI C.

• On VMS, GAS versions 1.38.1 and earlier may cause spurious warning messages from the

linker. These warning messages complain of mismatched psect attributes. You can ignore

them. See Section 3.7 [VMS Install], page 80.

• On NewsOS version 3, if you include both ‘stddef.h’ and ‘sys/types.h’, you get an error

because there are two typedefs of size_t. You should change ‘sys/types.h’ by adding these

lines around the definition of size_t:

#ifndef _SIZE_T
#define _SIZE_T
actual typedef here
#endif

• On the Alliant, the system’s own convention for returning structures and unions is unusual,

and is not compatible with GNU CC no matter what options are used.

• On the IBM RT PC, the MetaWare HighC compiler (hc) uses yet another convention for

structure and union returning. Use ‘-mhc-struct-return’ to tell GNU CC to use a convention

compatible with it.

• On Ultrix, the Fortran compiler expects registers 2 through 5 to be saved by function calls.

However, the C compiler uses conventions compatible with BSD Unix: registers 2 through 5

may be clobbered by function calls.

GNU CC uses the same convention as the Ultrix C compiler. You can use these options to

produce code compatible with the Fortran compiler:

-fcall-saved-r2 -fcall-saved-r3 -fcall-saved-r4 -fcall-saved-r5

• On the WE32k, you may find that programs compiled with GNU CC do not work with the

standard shared C ilbrary. You may need to link with the ordinary C compiler. If you do so,

you must specify the following options:

-L/usr/local/lib/gcc-lib/we32k-att-sysv/2.3 -lgcc -lc_s

The first specifies where to find the library ‘libgcc.a’ specified with the ‘-lgcc’ option.

130 Using and Porting GNU CC

GNU CC does linking by invoking ld, just as cc does, and there is no reason why it should

matter which compilation program you use to invoke ld. If someone tracks this problem down,

it can probably be fixed easily.

5.5 Incompatibilities of GNU CC

There are several noteworthy incompatibilities between GNU C and most existing (non-ANSI)

versions of C. The ‘-traditional’ option eliminates many of these incompatibilities, but not all,

by telling GNU C to behave like the other C compilers.

• GNU CC normally makes string constants read-only. If several identical-looking string con-

stants are used, GNU CC stores only one copy of the string.

One consequence is that you cannot call mktemp with a string constant argument. The function

mktemp always alters the string its argument points to.

Another consequence is that sscanf does not work on some systems when passed a string

constant as its format control string or input. This is because sscanf incorrectly tries to write

into the string constant. Likewise fscanf and scanf.

The best solution to these problems is to change the program to use char-array variables with

initialization strings for these purposes instead of string constants. But if this is not possible,

you can use the ‘-fwritable-strings’ flag, which directs GNU CC to handle string constants

the same way most C compilers do. ‘-traditional’ also has this effect, among others.

• -2147483648 is positive.

This is because 2147483648 cannot fit in the type int, so (following the ANSI C rules) its data

type is unsigned long int. Negating this value yields 2147483648 again.

• GNU CC does not substitute macro arguments when they appear inside of string constants.

For example, the following macro in GNU CC

#define foo(a) "a"

will produce output "a" regardless of what the argument a is.

The ‘-traditional’ option directs GNU CC to handle such cases (among others) in the old-

fashioned (non-ANSI) fashion.

• When you use setjmp and longjmp, the only automatic variables guaranteed to remain valid

are those declared volatile. This is a consequence of automatic register allocation. Consider

this function:

jmp_buf j;

foo ()

Chapter 5: Known Causes of Trouble with GNU CC 131

{
int a, b;

a = fun1 ();
if (setjmp (j))

return a;

a = fun2 ();
/* longjmp (j) may occur in fun3. */
return a + fun3 ();

}

Here a may or may not be restored to its first value when the longjmp occurs. If a is allocated

in a register, then its first value is restored; otherwise, it keeps the last value stored in it.

If you use the ‘-W’ option with the ‘-O’ option, you will get a warning when GNU CC thinks

such a problem might be possible.

The ‘-traditional’ option directs GNU C to put variables in the stack by default, rather than

in registers, in functions that call setjmp. This results in the behavior found in traditional C

compilers.

• Programs that use preprocessor directives in the middle of macro arguments do not work with

GNU CC. For example, a program like this will not work:

foobar (
#define luser

hack)

ANSI C does not permit such a construct. It would make sense to support it when

‘-traditional’ is used, but it is too much work to implement.

• Declarations of external variables and functions within a block apply only to the block con-

taining the declaration. In other words, they have the same scope as any other declaration in

the same place.

In some other C compilers, a extern declaration affects all the rest of the file even if it happens

within a block.

The ‘-traditional’ option directs GNU C to treat all extern declarations as global, like

traditional compilers.

• In traditional C, you can combine long, etc., with a typedef name, as shown here:

typedef int foo;
typedef long foo bar;

In ANSI C, this is not allowed: long and other type modifiers require an explicit int. Because

this criterion is expressed by Bison grammar rules rather than C code, the ‘-traditional’

flag cannot alter it.

• PCC allows typedef names to be used as function parameters. The difficulty described imme-

diately above applies here too.

132 Using and Porting GNU CC

• PCC allows whitespace in the middle of compound assignment operators such as ‘+=’. GNU

CC, following the ANSI standard, does not allow this. The difficulty described immediately

above applies here too.

• GNU CC complains about unterminated character constants inside of preprocessor conditionals

that fail. Some programs have English comments enclosed in conditionals that are guaranteed

to fail; if these comments contain apostrophes, GNU CC will probably report an error. For

example, this code would produce an error:

#if 0
You can’t expect this to work.
#endif

The best solution to such a problem is to put the text into an actual C comment delimited by

‘/*. . .*/’. However, ‘-traditional’ suppresses these error messages.

• Many user programs contain the declaration ‘long time ();’. In the past, the system header

files on many systems did not actually declare time, so it did not matter what type your

program declared it to return. But in systems with ANSI C headers, time is declared to

return time_t, and if that is not the same as long, then ‘long time ();’ is erroneous.

The solution is to change your program to use time_t as the return type of time.

• When compiling functions that return float, PCC converts it to a double. GNU CC actu-

ally returns a float. If you are concerned with PCC compatibility, you should declare your

functions to return double; you might as well say what you mean.

• When compiling functions that return structures or unions, GNU CC output code normally

uses a method different from that used on most versions of Unix. As a result, code compiled

with GNU CC cannot call a structure-returning function compiled with PCC, and vice versa.

The method used by GNU CC is as follows: a structure or union which is 1, 2, 4 or 8 bytes

long is returned like a scalar. A structure or union with any other size is stored into an address

supplied by the caller (usually in a special, fixed register, but on some machines it is passed

on the stack). The machine-description macros STRUCT_VALUE and STRUCT_INCOMING_VALUE

tell GNU CC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size by copying

the data into an area of static storage, and then returning the address of that storage as if it

were a pointer value. The caller must copy the data from that memory area to the place where

the value is wanted. GNU CC does not use this method because it is slower and nonreentrant.

On some newer machines, PCC uses a reentrant convention for all structure and union re-

turning. GNU CC on most of these machines uses a compatible convention when returning

structures and unions in memory, but still returns small structures and unions in registers.

You can tell GNU CC to use a compatible convention for all structure and union returning

with the option ‘-fpcc-struct-return’.

Chapter 5: Known Causes of Trouble with GNU CC 133

5.6 Disappointments and Misunderstandings

These problems are perhaps regrettable, but we don’t know any practical way around them.

• Certain local variables aren’t recognized by debuggers when you compile with optimization.

This occurs because sometimes GNU CC optimizes the variable out of existence. There is no

way to tell the debugger how to compute the value such a variable “would have had”, and it is

not clear that would be desirable anyway. So GNU CC simply does not mention the eliminated

variable when it writes debugging information.

You have to expect a certain amount of disagreement between the executable and your source

code, when you use optimization.

• Users often think it is a bug when GNU CC reports an error for code like this:

int foo (struct mumble *);

struct mumble { . . . };

int foo (struct mumble *x)
{ . . . }

This code really is erroneous, because the scope of struct mumble in the prototype is limited

to the argument list containing it. It does not refer to the struct mumble defined with file

scope immediately below—they are two unrelated types with similar names in different scopes.

But in the definition of foo, the file-scope type is used because that is available to be inherited.

Thus, the definition and the prototype do not match, and you get an error.

This behavior may seem silly, but it’s what the ANSI standard specifies. It is easy enough for

you to make your code work by moving the definition of struct mumble above the prototype.

It’s not worth being incompatible with ANSI C just to avoid an error for the example shown

above.

• Accesses to bitfields even in volatile objects works by accessing larger objects, such as a byte

or a word. You cannot rely on what size of object is accessed in order to read or write the

bitfield; it may even vary for a given bitfield according to the precise usage.

If you care about controlling the amount of memory that is accessed, use volatile but do not

use bitfields.

• On 68000 systems, you can get paradoxical results if you test the precise values of floating

point numbers. For example, you can find that a floating point value which is not a NaN is not

equal to itself. This results from the fact that the the floating point registers hold a few more

bits of precision than fit in a double in memory. Compiled code moves values between memory

and floating point registers at its convenience, and moving them into memory truncates them.

You can partially avoid this problem by using the option ‘-ffloat-store’ (see Section 2.6

[Optimize Options], page 32).

134 Using and Porting GNU CC

• On the MIPS, variable argument functions using ‘varargs.h’ cannot have a floating point

value for the first argument. The reason for this is that in the absence of a prototype in scope,

if the first argument is a floating point, it is passed in a floating point register, rather than an

integer resgister.

If the code is rewritten to use the ANSI standard ‘stdarg.h’ method of variable arguments,

and the prototype is in scope at the time of the call, everything will work fine.

5.7 Caveats of using protoize

The conversion programs protoize and unprotoize can sometimes change a source file in a

way that won’t work unless you rearrange it.

• protoize can insert references to a type name or type tag before the definition, or in a file

where they are not defined.

If this happens, compiler error messages should show you where the new references are, so

fixing the file by hand is straightforward.

• There are some C constructs which protoize cannot figure out. For example, it can’t deter-

mine argument types for declaring a pointer-to-function variable; this you must do by hand.

protoize inserts a comment containing ‘???’ each time it finds such a variable; so you can find

all such variables by searching for this string. ANSI C does not require declaring the argument

types of pointer-to-function types.

• Using unprotoize can easily introduce bugs. If the program relied on prototypes to bring

about conversion of arguments, these conversions will not take place in the program without

prototypes. One case in which you can be sure unprotoize is safe is when you are remov-

ing prototypes that were made with protoize; if the program worked before without any

prototypes, it will work again without them.

You can find all the places where this problem might occur by compiling the program with the

‘-Wconversion’ option. It prints a warning whenever an argument is converted.

• Both conversion programs can be confused if there are macro calls in and around the text to be

converted. In other words, the standard syntax for a declaration or definition must not result

from expanding a macro. This problem is inherent in the design of C and cannot be fixed. If

only a few functions have confusing macro calls, you can easily convert them manually.

• protoize cannot get the argument types for a function whose definition was not actually

compiled due to preprocessor conditionals. When this happens, protoize changes nothing in

regard to such a function. protoize tries to detect such instances and warn about them.

You can generally work around this problem by using protoize step by step, each time specify-

ing a different set of ‘-D’ options for compilation, until all of the functions have been converted.

There is no automatic way to verify that you have got them all, however.

Chapter 5: Known Causes of Trouble with GNU CC 135

• Confusion may result if there is an occasion to convert a function declaration or definition in

a region of source code where there is more than one formal parameter list present. Thus,

attempts to convert code containing multiple (conditionally compiled) versions of a single

function header (in the same vicinity) may not produce the desired (or expected) results.

If you plan on converting source files which contain such code, it is recommended that you

first make sure that each conditionally compiled region of source code which contains an

alternative function header also contains at least one additional follower token (past the final

right parenthesis of the function header). This should circumvent the problem.

• unprotoize can become confused when trying to convert a function definition or declaration

which contains a declaration for a pointer-to-function formal argument which has the same

name as the function being defined or declared. We recommand you avoid such choices of

formal parameter names.

• You might also want to correct some of the indentation by hand and break long lines. (The

conversion programs don’t write lines longer than eighty characters in any case.)

5.8 Certain Changes We Don’t Want to Make

This section lists changes that people frequently request, but which we do not make because we

think GNU CC is better without them.

• Checking the number and type of arguments to a function which has an old-fashioned definition

and no prototype.

Such a feature would work only occasionally—only for calls that appear in the same file as the

called function, following the definition. The only way to check all calls reliably is to add a

prototype for the function. But adding a prototype eliminates the motivation for this feature.

So the feature is not worthwhile.

• Warning about using an expression whose type is signed as a shift count.

Shift count operands are probably signed more often than unsigned. Warning about this would

cause far more annoyance than good.

• Warning about assigning a signed value to an unsigned variable.

Such assignments must be very common; warning about them would cause more annoyance

than good.

• Warning about unreachable code.

It’s very common to have unreachable code in machine-generated programs. For example, this

happens normally in some files of GNU C itself.

136 Using and Porting GNU CC

• Warning when a non-void function value is ignored.

Coming as I do from a Lisp background, I balk at the idea that there is something dangerous

about discarding a value. There are functions that return values which some callers may find

useful; it makes no sense to clutter the program with a cast to void whenever the value isn’t

useful.

• Assuming (for optimization) that the address of an external symbol is never zero.

This assumption is false on certain systems when ‘#pragma weak’ is used.

• Making ‘-fshort-enums’ the default.

This would cause storage layout to be incompatible with most other C compilers. And it

doesn’t seem very important, given that you can get the same result in other ways. The case

where it matters most is when the enumeration-valued object is inside a structure, and in that

case you can specify a field width explicitly.

• Making bitfields unsigned by default on particular machines where “the ABI standard” says

to do so.

The ANSI C standard leaves it up to the implementation whether a bitfield declared plain int

is signed or not. This in effect creates two alternative dialects of C.

The GNU C compiler supports both dialects; you can specify the dialect you want with the

option ‘-fsigned-bitfields’ or ‘-funsigned-bitfields’. However, this leaves open the

question of which dialect to use by default.

Currently, the preferred dialect makes plain bitfields signed, because this is simplest. Since

int is the same as signed int in every other context, it is cleanest for them to be the same

in bitfields as well.

Some computer manufacturers have published Application Binary Interface standards which

specify that plain bitfields should be unsigned. It is a mistake, however, to say anything about

this issue in an ABI. This is because the handling of plain bitfields distinguishes two dialects

of C. Both dialects are meaningful on every type of machine. Whether a particular object file

was compiled using signed bitfields or unsigned is of no concern to other object files, even if

they access the same bitfields in the same data structures.

A given program is written in one or the other of these two dialects. The program stands a

chance to work on most any machine if it is compiled with the proper dialect. It is unlikely to

work at all if compiled with the wrong dialect.

Many users appreciate the GNU C compiler because it provides an environment that is uniform

across machines. These users would be inconvenienced if the compiler treated plain bitfields

differently on certain machines.

Occasionally users write programs intended only for a particular machine type. On these

occasions, the users would benefit if the GNU C compiler were to support by default the same

dialect as the other compilers on that machine. But such applications are rare. And users

writing a program to run on more than one type of machine cannot possibly benefit from this

kind of compatibility.

Chapter 5: Known Causes of Trouble with GNU CC 137

This is why GNU CC does and will treat plain bitfields in the same fashion on all types of

machines (by default).

There are some arguments for making bitfields unsigned by default on all machines. If, for

example, this becomes a universal de facto standard, it would make sense for GNU CC to go

along with it. This is something to be considered in the future.

(Of course, users strongly concerned about portability should indicate explicitly in each bitfield

whether it is signed or not. In this way, they write programs which have the same meaning in

both C dialects.)

• Undefining __STDC__ when ‘-ansi’ is not used.

Currently, GNU CC defines __STDC__ as long as you don’t use ‘-traditional’. This provides

good results in practice.

Programmers normally use conditionals on __STDC__ to ask whether it is safe to use certain

features of ANSI C, such as function prototypes or ANSI token concatenation. Since plain

‘gcc’ supports all the features of ANSI C, the correct answer to these questions is “yes”.

Some users try to use __STDC__ to check for the availability of certain library facilities. This

is actually incorrect usage in an ANSI C program, because the ANSI C standard says that a

conforming freestanding implementation should define __STDC__ even though it does not have

the library facilities. ‘gcc -ansi -pedantic’ is a conforming freestanding implementation,

and it is therefore required to define __STDC__, even though it does not come with an ANSI

C library.

Sometimes people say that defining __STDC__ in a compiler that does not completely conform

to the ANSI C standard somehow violates the standard. This is illogical. The standard is

a standard for compilers that claim to support ANSI C, such as ‘gcc -ansi’—not for other

compilers such as plain ‘gcc’. Whatever the ANSI C standard says is relevant to the design of

plain ‘gcc’ without ‘-ansi’ only for pragmatic reasons, not as a requirement.

• Undefining __STDC__ in C++.

Programs written to compile with C++-to-C translators get the value of __STDC__ that goes

with the C compiler that is subsequently used. These programs must test __STDC__ to deter-

mine what kind of C preprocessor that compiler uses: whether they should concatenate tokens

in the ANSI C fashion or in the traditional fashion.

These programs work properly with GNU C++ if __STDC__ is defined. They would not work

otherwise.

In addition, many header files are written to provide prototypes in ANSI C but not in tradi-

tional C. Many of these header files can work without change in C++ provided __STDC__ is

defined. If __STDC__ is not defined, they will all fail, and will all need to be changed to test

explicitly for C++ as well.

• Deleting “empty” loops.

138 Using and Porting GNU CC

GNU CC does not delete “empty” loops because the most likely reason you would put one in

a program is to have a delay. Deleting them will not make real programs run any faster, so it

would be pointless.

It would be different if optimization of a nonempty loop could produce an empty one. But this

generally can’t happen.

Chapter 6: Reporting Bugs 139

6 Reporting Bugs

Your bug reports play an essential role in making GNU CC reliable.

When you encounter a problem, the first thing to do is to see if it is already known. See

Chapter 5 [Trouble], page 123. If it isn’t known, then you should report the problem.

Reporting a bug may help you by bringing a solution to your problem, or it may not. (If it does

not, look in the service directory; see Chapter 7 [Service], page 149.) In any case, the principal

function of a bug report is to help the entire community by making the next version of GNU CC

work better. Bug reports are your contribution to the maintenance of GNU CC.

In order for a bug report to serve its purpose, you must include the information that makes for

fixing the bug.

6.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:

• If the compiler gets a fatal signal, for any input whatever, that is a compiler bug. Reliable

compilers never crash.

• If the compiler produces invalid assembly code, for any input whatever (except an asm state-

ment), that is a compiler bug, unless the compiler reports errors (not just warnings) which

would ordinarily prevent the assembler from being run.

• If the compiler produces valid assembly code that does not correctly execute the input source

code, that is a compiler bug.

However, you must double-check to make sure, because you may have run into an incompati-

bility between GNU C and traditional C (see Section 5.5 [Incompatibilities], page 130). These

incompatibilities might be considered bugs, but they are inescapable consequences of valuable

features.

Or you may have a program whose behavior is undefined, which happened by chance to give

the desired results with another C or C++ compiler.

For example, in many nonoptimizing compilers, you can write ‘x;’ at the end of a function

instead of ‘return x;’, with the same results. But the value of the function is undefined if

return is omitted; it is not a bug when GNU CC produces different results.

140 Using and Porting GNU CC

Problems often result from expressions with two increment operators, as in f (*p++, *p++).

Your previous compiler might have interpreted that expression the way you intended; GNU

CC might interpret it another way. Neither compiler is wrong. The bug is in your code.

After you have localized the error to a single source line, it should be easy to check for these

things. If your program is correct and well defined, you have found a compiler bug.

• If the compiler produces an error message for valid input, that is a compiler bug.

• If the compiler does not produce an error message for invalid input, that is a compiler bug.

However, you should note that your idea of “invalid input” might be my idea of “an extension”

or “support for traditional practice”.

• If you are an experienced user of C or C++ compilers, your suggestions for improvement of

GNU CC or GNU C++ are welcome in any case.

6.2 Where to Report Bugs

Send bug reports for GNU C to one of these addresses:

bug-gcc@prep.ai.mit.edu
{ucbvax|mit-eddie|uunet}!prep.ai.mit.edu!bug-gcc

Send bug reports for GNU C++ to one of these addresses:

bug-g++@prep.ai.mit.edu
{ucbvax|mit-eddie|uunet}!prep.ai.mit.edu!bug-g++

Do not send bug reports to ‘help-gcc’, or to the newsgroup ‘gnu.gcc.help’. Most users

of GNU CC do not want to receive bug reports. Those that do, have asked to be on ‘bug-gcc’

and/or ‘bug-g++’.

The mailing lists ‘bug-gcc’ and ‘bug-g++’ both have newsgroups which serve as repeaters:

‘gnu.gcc.bug’ and ‘gnu.g++.bug’. Each mailing list and its newsgroup carry exactly the same

messages.

Often people think of posting bug reports to the newsgroup instead of mailing them. This

appears to work, but it has one problem which can be crucial: a newsgroup posting does not

contain a mail path back to the sender. Thus, if maintainers need more information, they may be

Chapter 6: Reporting Bugs 141

unable to reach you. For this reason, you should always send bug reports by mail to the proper

mailing list.

As a last resort, send bug reports on paper to:

GNU Compiler Bugs
Free Software Foundation
675 Mass Ave
Cambridge, MA 02139

6.3 How to Report Bugs

The fundamental principle of reporting bugs usefully is this: report all the facts. If you are

not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and they con-

clude that some details don’t matter. Thus, you might assume that the name of the variable you

use in an example does not matter. Well, probably it doesn’t, but one cannot be sure. Perhaps

the bug is a stray memory reference which happens to fetch from the location where that name

is stored in memory; perhaps, if the name were different, the contents of that location would fool

the compiler into doing the right thing despite the bug. Play it safe and give a specific, complete

example. That is the easiest thing for you to do, and the most helpful.

Keep in mind that the purpose of a bug report is to enable someone to fix the bug if it is not

known. It isn’t very important what happens if the bug is already known. Therefore, always write

your bug reports on the assumption that the bug is not known.

Sometimes people give a few sketchy facts and ask, “Does this ring a bell?” This cannot help

us fix a bug, so it is basically useless. We respond by asking for enough details to enable us to

investigate. You might as well expedite matters by sending them to begin with.

Try to make your bug report self-contained. If we have to ask you for more information, it is

best if you include all the previous information in your response, as well as the information that

was missing.

To enable someone to investigate the bug, you should include all these things:

142 Using and Porting GNU CC

• The version of GNU CC. You can get this by running it with the ‘-v’ option.

Without this, we won’t know whether there is any point in looking for the bug in the current

version of GNU CC.

• A complete input file that will reproduce the bug. If the bug is in the C preprocessor, send a

source file and any header files that it requires. If the bug is in the compiler proper (‘cc1’), run

your source file through the C preprocessor by doing ‘gcc -E sourcefile > outfile’, then include

the contents of outfile in the bug report. (When you do this, use the same ‘-I’, ‘-D’ or ‘-U’

options that you used in actual compilation.)

A single statement is not enough of an example. In order to compile it, it must be embedded

in a complete file of compiler input; and the bug might depend on the details of how this is

done.

Without a real example one can compile, all anyone can do about your bug report is wish you

luck. It would be futile to try to guess how to provoke the bug. For example, bugs in register

allocation and reloading frequently depend on every little detail of the function they happen

in.

Even if the input file that fails comes from a GNU program, you should still send the complete

test case. Don’t ask the GNU CC maintainers to do the extra work of obtaining the program

in question—they are all overworked as it is. Also, the problem may depend on what is in the

header files on your system; it is unreliable for the GNU CC maintainers to try the problem

with the header files available to them. By sending CPP output, you can eliminate this source

of uncertainty.

• The command arguments you gave GNU CC or GNU C++ to compile that example and observe

the bug. For example, did you use ‘-O’? To guarantee you won’t omit something important,

list all the options.

If we were to try to guess the arguments, we would probably guess wrong and then we would

not encounter the bug.

• The type of machine you are using, and the operating system name and version number.

• The operands you gave to the configure command when you installed the compiler.

• A complete list of any modifications you have made to the compiler source. (We don’t promise

to investigate the bug unless it happens in an unmodified compiler. But if you’ve made

modifications and don’t tell us, then you are sending us on a wild goose chase.)

Be precise about these changes. A description in English is not enough—send a context diff

for them.

Adding files of your own (such as a machine description for a machine we don’t support) is a

modification of the compiler source.

• Details of any other deviations from the standard procedure for installing GNU CC.

• A description of what behavior you observe that you believe is incorrect. For example, “The

compiler gets a fatal signal,” or, “The assembler instruction at line 208 in the output is incor-

rect.”

Chapter 6: Reporting Bugs 143

Of course, if the bug is that the compiler gets a fatal signal, then one can’t miss it. But if the

bug is incorrect output, the maintainer might not notice unless it is glaringly wrong. None of

us has time to study all the assembler code from a 50-line C program just on the chance that

one instruction might be wrong. We need you to do this part!

Even if the problem you experience is a fatal signal, you should still say so explicitly. Suppose

something strange is going on, such as, your copy of the compiler is out of synch, or you have

encountered a bug in the C library on your system. (This has happened!) Your copy might

crash and the copy here would not. If you said to expect a crash, then when the compiler

here fails to crash, we would know that the bug was not happening. If you don’t say to expect

a crash, then we would not know whether the bug was happening. We would not be able to

draw any conclusion from our observations.

If the problem is a diagnostic when compiling GNU CC with some other compiler, say whether

it is a warning or an error.

Often the observed symptom is incorrect output when your program is run. Sad to say, this is

not enough information unless the program is short and simple. None of us has time to study

a large program to figure out how it would work if compiled correctly, much less which line of

it was compiled wrong. So you will have to do that. Tell us which source line it is, and what

incorrect result happens when that line is executed. A person who understands the program

can find this as easily as finding a bug in the program itself.

• If you send examples of assembler code output from GNU CC or GNU C++, please use ‘-g’

when you make them. The debugging information includes source line numbers which are

essential for correlating the output with the input.

• If you wish to mention something in the GNU CC source, refer to it by context, not by line

number.

The line numbers in the development sources don’t match those in your sources. Your line

numbers would convey no useful information to the maintainers.

• Additional information from a debugger might enable someone to find a problem on a machine

which he does not have available. However, you need to think when you collect this information

if you want it to have any chance of being useful.

For example, many people send just a backtrace, but that is never useful by itself. A simple

backtrace with arguments conveys little about GNU CC because the compiler is largely data-

driven; the same functions are called over and over for different RTL insns, doing different

things depending on the details of the insn.

Most of the arguments listed in the backtrace are useless because they are pointers to RTL

list structure. The numeric values of the pointers, which the debugger prints in the backtrace,

have no significance whatever; all that matters is the contents of the objects they point to (and

most of the contents are other such pointers).

144 Using and Porting GNU CC

In addition, most compiler passes consist of one or more loops that scan the RTL insn sequence.

The most vital piece of information about such a loop—which insn it has reached—is usually

in a local variable, not in an argument.

What you need to provide in addition to a backtrace are the values of the local variables for

several stack frames up. When a local variable or an argument is an RTX, first print its value

and then use the GDB command pr to print the RTL expression that it points to. (If GDB

doesn’t run on your machine, use your debugger to call the function debug_rtx with the RTX

as an argument.) In general, whenever a variable is a pointer, its value is no use without the

data it points to.

Here are some things that are not necessary:

• A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to the input

file will make the bug go away and which changes will not affect it.

This is often time consuming and not very useful, because the way we will find the bug is by

running a single example under the debugger with breakpoints, not by pure deduction from a

series of examples. You might as well save your time for something else.

Of course, if you can find a simpler example to report instead of the original one, that is a

convenience. Errors in the output will be easier to spot, running under the debugger will take

less time, etc. Most GNU CC bugs involve just one function, so the most straightforward

way to simplify an example is to delete all the function definitions except the one where the

bug occurs. Those earlier in the file may be replaced by external declarations if the crucial

function depends on them. (Exception: inline functions may affect compilation of functions

defined later in the file.)

However, simplification is not vital; if you don’t want to do this, report the bug anyway and

send the entire test case you used.

• In particular, some people insert conditionals ‘#ifdef BUG’ around a statement which, if re-

moved, makes the bug not happen. These are just clutter; we won’t pay any attention to them

anyway. Besides, you should send us cpp output, and that can’t have conditionals.

• A patch for the bug.

A patch for the bug is useful if it is a good one. But don’t omit the necessary information,

such as the test case, on the assumption that a patch is all we need. We might see problems

with your patch and decide to fix the problem another way, or we might not understand it at

all.

Sometimes with a program as complicated as GNU CC it is very hard to construct an example

that will make the program follow a certain path through the code. If you don’t send the

example, we won’t be able to construct one, so we won’t be able to verify that the bug is fixed.

Chapter 6: Reporting Bugs 145

And if we can’t understand what bug you are trying to fix, or why your patch should be an

improvement, we won’t install it. A test case will help us to understand.

See Section 6.4 [Sending Patches], page 145, for guidelines on how to make it easy for us to

understand and install your patches.

• A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even I can’t guess right about such things without first using

the debugger to find the facts.

• A core dump file.

We have no way of examining a core dump for your type of machine unless we have an identical

system—and if we do have one, we should be able to reproduce the crash ourselves.

6.4 Sending Patches for GNU CC

If you would like to write bug fixes or improvements for the GNU C compiler, that is very

helpful. When you send your changes, please follow these guidelines to avoid causing extra work

for us in studying the patches.

If you don’t follow these guidelines, your information might still be useful, but using it will take

extra work. Maintaining GNU C is a lot of work in the best of circumstances, and we can’t keep

up unless you do your best to help.

• Send an explanation with your changes of what problem they fix or what improvement they

bring about. For a bug fix, just include a copy of the bug report, and explain why the change

fixes the bug.

(Referring to a bug report is not as good as including it, because then we will have to look it

up, and we have probably already deleted it if we’ve already fixed the bug.)

• Always include a proper bug report for the problem you think you have fixed. We need to

convince ourselves that the change is right before installing it. Even if it is right, we might

have trouble judging it if we don’t have a way to reproduce the problem.

• Include all the comments that are appropriate to help people reading the source in the future

understand why this change was needed.

• Don’t mix together changes made for different reasons. Send them individually.

If you make two changes for separate reasons, then we might not want to install them both.

We might want to install just one. If you send them all jumbled together in a single set of diffs,

we have to do extra work to disentangle them—to figure out which parts of the change serve

which purpose. If we don’t have time for this, we might have to ignore your changes entirely.

146 Using and Porting GNU CC

If you send each change as soon as you have written it, with its own explanation, then the two

changes never get tangled up, and we can consider each one properly without any extra work

to disentangle them.

Ideally, each change you send should be impossible to subdivide into parts that we might want

to consider separately, because each of its parts gets its motivation from the other parts.

• Send each change as soon as that change is finished. Sometimes people think they are helping

us by accumulating many changes to send them all together. As explained above, this is

absolutely the worst thing you could do.

Since you should send each change separately, you might as well send it right away. That gives

us the option of installing it immediately if it is important.

• Use ‘diff -c’ to make your diffs. Diffs without context are hard for us to install reliably. More

than that, they make it hard for us to study the diffs to decide whether we want to install

them. Unidiff format is better than contextless diffs, but not as easy to read as ‘-c’ format.

If you have GNU diff, use ‘diff -cp’, which shows the name of the function that each change

occurs in.

• Write the change log entries for your changes. We get lots of changes, and we don’t have time

to do all the change log writing ourselves.

Read the ‘ChangeLog’ file to see what sorts of information to put in, and to learn the style that

we use. The purpose of the change log is to show people where to find what was changed. So

you need to be specific about what functions you changed; in large functions, it’s often helpful

to indicate where within the function the change was.

On the other hand, once you have shown people where to find the change, you need not explain

its purpose. Thus, if you add a new function, all you need to say about it is that it is new.

If you feel that the purpose needs explaining, it probably does—but the explanation will be

much more useful if you put it in comments in the code.

If you would like your name to appear in the header line for who made the change, send us

the header line.

• When you write the fix, keep in mind that we can’t install a change that would break other

systems.

People often suggest fixing a problem by changing machine-independent files such as ‘toplev.c’

to do something special that a particular system needs. Sometimes it is totally obvious that

such changes would break GNU CC for almost all users. We can’t possibly make a change

like that. At best it might tell us how to write another patch that would solve the problem

acceptably.

Sometimes people send fixes that might be an improvement in general—but it is hard to be

sure of this. It’s hard to install such changes because we have to study them very carefully. Of

course, a good explanation of the reasoning by which you concluded the change was correct

can help convince us.

Chapter 6: Reporting Bugs 147

The safest changes are changes to the configuration files for a particular machine. These are

safe because they can’t create new bugs on other machines.

Please help us keep up with the workload by designing the patch in a form that is good to

install.

148 Using and Porting GNU CC

Chapter 7: How To Get Help with GNU CC 149

7 How To Get Help with GNU CC

If you need help installing, using or changing GNU CC, there are two ways to find it:

• Send a message to a suitable network mailing list. First try bug-gcc@prep.ai.mit.edu, and

if that brings no response, try help-gcc@prep.ai.mit.edu.

• Look in the service directory for someone who might help you for a fee. The service directory

is found in the file named ‘SERVICE’ in the GNU CC distribution.

150 Using and Porting GNU CC

Chapter 8: Using GNU CC on VMS 151

8 Using GNU CC on VMS

8.1 Include Files and VMS

Due to the differences between the filesystems of Unix and VMS, GNU CC attempts to translate

file names in ‘#include’ into names that VMS will understand. The basic strategy is to prepend

a prefix to the specification of the include file, convert the whole filename to a VMS filename, and

then try to open the file. GNU CC tries various prefixes one by one until one of them succeeds:

1. The first prefix is the ‘GNU_CC_INCLUDE:’ logical name: this is where GNU C header files are

traditionally stored. If you wish to store header files in non-standard locations, then you can

assign the logical ‘GNU_CC_INCLUDE’ to be a search list, where each element of the list is suitable

for use with a rooted logical.

2. The next prefix tried is ‘SYS$SYSROOT:[SYSLIB.]’. This is where VAX-C header files are

traditionally stored.

3. If the include file specification by itself is a valid VMS filename, the preprocessor then uses

this name with no prefix in an attempt to open the include file.

4. If the file specification is not a valid VMS filename (i.e. does not contain a device or a directory

specifier, and contains a ‘/’ character), the preprocessor tries to convert it from Unix syntax

to VMS syntax.

Conversion works like this: the first directory name becomes a device, and the rest of the

directories are converted into VMS-format directory names. For example, ‘X11/foobar.h’ is

translated to ‘X11:[000000]foobar.h’ or ‘X11:foobar.h’, whichever one can be opened. This

strategy allows you to assign a logical name to point to the actual location of the header files.

5. If none of these strategies succeeds, the ‘#include’ fails.

Include directives of the form:

#include foobar

are a common source of incompatibility between VAX-C and GNU CC. VAX-C treats this much

like a standard #include <foobar.h> directive. That is incompatible with the ANSI C behavior

implemented by GNU CC: to expand the name foobar as a macro. Macro expansion should

eventually yield one of the two standard formats for #include:

152 Using and Porting GNU CC

#include "file"
#include <file>

If you have this problem, the best solution is to modify the source to convert the #include

directives to one of the two standard forms. That will work with either compiler. If you want a

quick and dirty fix, define the file names as macros with the proper expansion, like this:

#define stdio <stdio.h>

This will work, as long as the name doesn’t conflict with anything else in the program.

Another source of incompatibility is that VAX-C assumes that:

#include "foobar"

is actually asking for the file ‘foobar.h’. GNU CC does not make this assumption, and instead

takes what you ask for literally; it tries to read the file ‘foobar’. The best way to avoid this problem

is to always specify the desired file extension in your include directives.

GNU CC for VMS is distributed with a set of include files that is sufficient to compile most

general purpose programs. Even though the GNU CC distribution does not contain header files to

define constants and structures for some VMS system-specific functions, there is no reason why you

cannot use GNU CC with any of these functions. You first may have to generate or create header

files, either by using the public domain utility UNSDL (which can be found on a DECUS tape), or

by extracting the relevant modules from one of the system macro libraries, and using an editor to

construct a C header file.

A #include file name cannot contain a DECNET node name. The preprocessor reports an I/O

error if you attempt to use a node name, whether explicitly, or implicitly via a logical name.

8.2 Global Declarations and VMS

GNU CC does not provide the globalref, globaldef and globalvalue keywords of VAX-C.

You can get the same effect with an obscure feature of GAS, the GNU assembler. (This requires

Chapter 8: Using GNU CC on VMS 153

GAS version 1.39 or later.) The following macros allow you to use this feature in a fairly natural

way:

#ifdef __GNUC__
#define GLOBALREF(TYPE,NAME) \
TYPE NAME \
asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME)

#define GLOBALDEF(TYPE,NAME,VALUE) \
TYPE NAME \
asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME) \

= VALUE
#define GLOBALVALUEREF(TYPE,NAME) \
const TYPE NAME[1] \
asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME)

#define GLOBALVALUEDEF(TYPE,NAME,VALUE) \
const TYPE NAME[1] \
asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME) \

= {VALUE}
#else
#define GLOBALREF(TYPE,NAME) \
globalref TYPE NAME

#define GLOBALDEF(TYPE,NAME,VALUE) \
globaldef TYPE NAME = VALUE

#define GLOBALVALUEDEF(TYPE,NAME,VALUE) \
globalvalue TYPE NAME = VALUE

#define GLOBALVALUEREF(TYPE,NAME) \
globalvalue TYPE NAME

#endif

(The _$$PsectAttributes_GLOBALSYMBOL prefix at the start of the name is removed by the as-

sembler, after it has modified the attributes of the symbol). These macros are provided in the VMS

binaries distribution in a header file ‘GNU_HACKS.H’. An example of the usage is:

GLOBALREF (int, ijk);
GLOBALDEF (int, jkl, 0);

The macros GLOBALREF and GLOBALDEF cannot be used straightforwardly for arrays, since there

is no way to insert the array dimension into the declaration at the right place. However, you can

declare an array with these macros if you first define a typedef for the array type, like this:

typedef int intvector[10];
GLOBALREF (intvector, foo);

154 Using and Porting GNU CC

Array and structure initializers will also break the macros; you can define the initializer to be

a macro of its own, or you can expand the GLOBALDEF macro by hand. You may find a case where

you wish to use the GLOBALDEF macro with a large array, but you are not interested in explicitly

initializing each element of the array. In such cases you can use an initializer like: {0,}, which will

initialize the entire array to 0.

A shortcoming of this implementation is that a variable declared with GLOBALVALUEREF or

GLOBALVALUEDEF is always an array. For example, the declaration:

GLOBALVALUEREF(int, ijk);

declares the variable ijk as an array of type int [1]. This is done because a globalvalue is actually

a constant; its “value” is what the linker would normally consider an address. That is not how an

integer value works in C, but it is how an array works. So treating the symbol as an array name

gives consistent results—with the exception that the value seems to have the wrong type. Don’t

try to access an element of the array. It doesn’t have any elements. The array “address” may

not be the address of actual storage.

The fact that the symbol is an array may lead to warnings where the variable is used. Insert

type casts to avoid the warnings. Here is an example; it takes advantage of the ANSI C feature

allowing macros that expand to use the same name as the macro itself.

GLOBALVALUEREF (int, ss$_normal);
GLOBALVALUEDEF (int, xyzzy,123);
#ifdef __GNUC__
#define ss$_normal ((int) ss$_normal)
#define xyzzy ((int) xyzzy)
#endif

Don’t use globaldef or globalref with a variable whose type is an enumeration type; this is

not implemented. Instead, make the variable an integer, and use a globalvaluedef for each of the

enumeration values. An example of this would be:

#ifdef __GNUC__
GLOBALDEF (int, color, 0);
GLOBALVALUEDEF (int, RED, 0);
GLOBALVALUEDEF (int, BLUE, 1);
GLOBALVALUEDEF (int, GREEN, 3);
#else

Chapter 8: Using GNU CC on VMS 155

enum globaldef color {RED, BLUE, GREEN = 3};
#endif

8.3 Other VMS Issues

GNU CC automatically arranges for main to return 1 by default if you fail to specify an explicit

return value. This will be interpreted by VMS as a status code indicating a normal successful

completion. Version 1 of GNU CC did not provide this default.

GNU CC on VMS works only with the GNU assembler, GAS. You need version 1.37 or later

of GAS in order to produce value debugging information for the VMS debugger. Use the ordinary

VMS linker with the object files produced by GAS.

Under previous versions of GNU CC, the generated code would occasionally give strange results

when linked to the sharable ‘VAXCRTL’ library. Now this should work.

A caveat for use of const global variables: the constmodifier must be specified in every external

declaration of the variable in all of the source files that use that variable. Otherwise the linker will

issue warnings about conflicting attributes for the variable. Your program will still work despite

the warnings, but the variable will be placed in writable storage.

Although the VMS linker does distinguish between upper and lower case letters in global sym-

bols, most VMS compilers convert all such symbols into upper case and most run-time library

routines also have upper case names. To be able to reliably call such routines, GNU CC (by means

of the assembler GAS) converts global symbols into upper case like other VMS compilers. However,

since the usual practice in C is to distinguish case, GNU CC (via GAS) tries to preserve usual C

behavior by augmenting each name that is not all lower case. This means truncating the name to

at most 23 characters and then adding more characters at the end which encode the case pattern

of those 23. Names which contain at least one dollar sign are an exception; they are converted

directly into upper case without augmentation.

Name augmentation yields bad results for programs that use precompiled libraries (such as Xlib)

which were generated by another compiler. You can use the compiler option ‘/NOCASE_HACK’ to

inhibit augmentation; it makes external C functions and variables case-independent as is usual on

VMS. Alternatively, you could write all references to the functions and variables in such libraries

using lower case; this will work on VMS, but is not portable to other systems. The compiler option

‘/NAMES’ also provides control over global name handling.

156 Using and Porting GNU CC

Function and variable names are handled somewhat differently with GNU C++. The GNU C++

compiler performs name mangling on function names, which means that it adds information to the

function name to describe the data types of the arguments that the function takes. One result of

this is that the name of a function can become very long. Since the VMS linker only recognizes the

first 31 characters in a name, special action is taken to ensure that each function and variable has

a unique name that can be represented in 31 characters.

If the name (plus a name augmentation, if required) is less than 32 characters in length, then

no special action is performed. If the name is longer than 31 characters, the assembler (GAS) will

generate a hash string based upon the function name, truncate the function name to 23 characters,

and append the hash string to the truncated name. If the ‘/VERBOSE’ compiler option is used, the

assembler will print both the full and truncated names of each symbol that is truncated.

The ‘/NOCASE_HACK’ compiler option should not be used when you are compiling programs that

use libg++. libg++ has several instances of objects (i.e. Filebuf and filebuf) which become

indistinguishable in a case-insensitive environment. This leads to cases where you need to inhibit

augmentation selectively (if you were using libg++ and Xlib in the same program, for example).

There is no special feature for doing this, but you can get the result by defining a macro for each

mixed case symbol for which you wish to inhibit augmentation. The macro should expand into the

lower case equivalent of itself. For example:

#define StuDlyCapS studlycaps

These macro definitions can be placed in a header file to minimize the number of changes to

your source code.

Chapter 9: GNU CC and Portability 157

9 GNU CC and Portability

The main goal of GNU CC was to make a good, fast compiler for machines in the class that

the GNU system aims to run on: 32-bit machines that address 8-bit bytes and have several general

registers. Elegance, theoretical power and simplicity are only secondary.

GNU CC gets most of the information about the target machine from a machine description

which gives an algebraic formula for each of the machine’s instructions. This is a very clean way

to describe the target. But when the compiler needs information that is difficult to express in

this fashion, I have not hesitated to define an ad-hoc parameter to the machine description. The

purpose of portability is to reduce the total work needed on the compiler; it was not of interest for

its own sake.

GNU CC does not contain machine dependent code, but it does contain code that depends

on machine parameters such as endianness (whether the most significant byte has the highest or

lowest address of the bytes in a word) and the availability of autoincrement addressing. In the

RTL-generation pass, it is often necessary to have multiple strategies for generating code for a

particular kind of syntax tree, strategies that are usable for different combinations of parameters.

Often I have not tried to address all possible cases, but only the common ones or only the ones that

I have encountered. As a result, a new target may require additional strategies. You will know if

this happens because the compiler will call abort. Fortunately, the new strategies can be added in

a machine-independent fashion, and will affect only the target machines that need them.

158 Using and Porting GNU CC

Chapter 10: Interfacing to GNU CC Output 159

10 Interfacing to GNU CC Output

GNU CC is normally configured to use the same function calling convention normally in use on

the target system. This is done with the machine-description macros described (see Chapter 14

[Target Macros], page 265).

However, returning of structure and union values is done differently on some target machines.

As a result, functions compiled with PCC returning such types cannot be called from code compiled

with GNU CC, and vice versa. This does not cause trouble often because few Unix library routines

return structures or unions.

GNU CC code returns structures and unions that are 1, 2, 4 or 8 bytes long in the same

registers used for int or double return values. (GNU CC typically allocates variables of such types

in registers also.) Structures and unions of other sizes are returned by storing them into an address

passed by the caller (usually in a register). The machine-description macros STRUCT_VALUE and

STRUCT_INCOMING_VALUE tell GNU CC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size by copying

the data into an area of static storage, and then returning the address of that storage as if it were a

pointer value. The caller must copy the data from that memory area to the place where the value

is wanted. This is slower than the method used by GNU CC, and fails to be reentrant.

On some target machines, such as RISC machines and the 80386, the standard system convention

is to pass to the subroutine the address of where to return the value. On these machines, GNU

CC has been configured to be compatible with the standard compiler, when this method is used.

It may not be compatible for structures of 1, 2, 4 or 8 bytes.

GNU CC uses the system’s standard convention for passing arguments. On some machines,

the first few arguments are passed in registers; in others, all are passed on the stack. It would be

possible to use registers for argument passing on any machine, and this would probably result in a

significant speedup. But the result would be complete incompatibility with code that follows the

standard convention. So this change is practical only if you are switching to GNU CC as the sole

C compiler for the system. We may implement register argument passing on certain machines once

we have a complete GNU system so that we can compile the libraries with GNU CC.

On some machines (particularly the Sparc), certain types of arguments are passed “by invisible

reference”. This means that the value is stored in memory, and the address of the memory location

is passed to the subroutine.

160 Using and Porting GNU CC

If you use longjmp, beware of automatic variables. ANSI C says that automatic variables

that are not declared volatile have undefined values after a longjmp. And this is all GNU CC

promises to do, because it is very difficult to restore register variables correctly, and one of GNU

CC’s features is that it can put variables in registers without your asking it to.

If you want a variable to be unaltered by longjmp, and you don’t want to write volatile because

old C compilers don’t accept it, just take the address of the variable. If a variable’s address is ever

taken, even if just to compute it and ignore it, then the variable cannot go in a register:

{
int careful;
&careful;
. . .

}

Code compiled with GNU CC may call certain library routines. Most of them handle arith-

metic for which there are no instructions. This includes multiply and divide on some machines,

and floating point operations on any machine for which floating point support is disabled with

‘-msoft-float’. Some standard parts of the C library, such as bcopy or memcpy, are also called

automatically. The usual function call interface is used for calling the library routines.

These library routines should be defined in the library ‘libgcc.a’, which GNU CC automatically

searches whenever it links a program. On machines that have multiply and divide instructions, if

hardware floating point is in use, normally ‘libgcc.a’ is not needed, but it is searched just in case.

Each arithmetic function is defined in ‘libgcc1.c’ to use the corresponding C arithmetic oper-

ator. As long as the file is compiled with another C compiler, which supports all the C arithmetic

operators, this file will work portably. However, ‘libgcc1.c’ does not work if compiled with GNU

CC, because each arithmetic function would compile into a call to itself!

Chapter 11: Passes and Files of the Compiler 161

11 Passes and Files of the Compiler

The overall control structure of the compiler is in ‘toplev.c’. This file is responsible for initial-

ization, decoding arguments, opening and closing files, and sequencing the passes.

The parsing pass is invoked only once, to parse the entire input. The RTL intermediate code

for a function is generated as the function is parsed, a statement at a time. Each statement is read

in as a syntax tree and then converted to RTL; then the storage for the tree for the statement is

reclaimed. Storage for types (and the expressions for their sizes), declarations, and a representation

of the binding contours and how they nest, remain until the function is finished being compiled;

these are all needed to output the debugging information.

Each time the parsing pass reads a complete function definition or top-level declaration, it

calls the function rest_of_compilation or rest_of_decl_compilation in ‘toplev.c’, which are

responsible for all further processing necessary, ending with output of the assembler language. All

other compiler passes run, in sequence, within rest_of_compilation. When that function returns

from compiling a function definition, the storage used for that function definition’s compilation is

entirely freed, unless it is an inline function (see Section 4.26 [Inline], page 111).

Here is a list of all the passes of the compiler and their source files. Also included is a description

of where debugging dumps can be requested with ‘-d’ options.

• Parsing. This pass reads the entire text of a function definition, constructing partial syntax

trees. This and RTL generation are no longer truly separate passes (formerly they were), but

it is easier to think of them as separate.

The tree representation does not entirely follow C syntax, because it is intended to support

other languages as well.

Language-specific data type analysis is also done in this pass, and every tree node that repre-

sents an expression has a data type attached. Variables are represented as declaration nodes.

Constant folding and some arithmetic simplifications are also done during this pass.

The language-independent source files for parsing are ‘stor-layout.c’, ‘fold-const.c’, and

‘tree.c’. There are also header files ‘tree.h’ and ‘tree.def’ which define the format of the

tree representation.

The source files for parsing C are ‘c-parse.y’, ‘c-decl.c’, ‘c-typeck.c’, ‘c-convert.c’,

‘c-lang.c’, and ‘c-aux-info.c’ along with header files ‘c-lex.h’, and ‘c-tree.h’.

The source files for parsing C++ are ‘cp-parse.y’, ‘cp-class.c’,

‘cp-cvt.c’, ‘cp-decl.c’, ‘cp-decl2.c’, ‘cp-dem.c’, ‘cp-except.c’,

‘cp-expr.c’, ‘cp-init.c’, ‘cp-lex.c’, ‘cp-method.c’, ‘cp-ptree.c’,

162 Using and Porting GNU CC

‘cp-search.c’, ‘cp-tree.c’, ‘cp-type2.c’, and ‘cp-typeck.c’, along with header files

‘cp-tree.def’, ‘cp-tree.h’, and ‘cp-decl.h’.

The special source files for parsing Objective C are ‘objc-parse.y’, ‘objc-actions.c’,

‘objc-tree.def’, and ‘objc-actions.h’. Certain C-specific files are used for this as well.

The file ‘c-common.c’ is also used for all of the above languages.

• RTL generation. This is the conversion of syntax tree into RTL code. It is actually done

statement-by-statement during parsing, but for most purposes it can be thought of as a separate

pass.

This is where the bulk of target-parameter-dependent code is found, since often it is necessary

for strategies to apply only when certain standard kinds of instructions are available. The

purpose of named instruction patterns is to provide this information to the RTL generation

pass.

Optimization is done in this pass for if-conditions that are comparisons, boolean operations

or conditional expressions. Tail recursion is detected at this time also. Decisions are made

about how best to arrange loops and how to output switch statements.

The source files for RTL generation include ‘stmt.c’, ‘function.c’, ‘expr.c’, ‘calls.c’,

‘explow.c’, ‘expmed.c’, ‘optabs.c’ and ‘emit-rtl.c’. Also, the file ‘insn-emit.c’, gener-

ated from the machine description by the program genemit, is used in this pass. The header

file ‘expr.h’ is used for communication within this pass.

The header files ‘insn-flags.h’ and ‘insn-codes.h’, generated from the machine description

by the programs genflags and gencodes, tell this pass which standard names are available

for use and which patterns correspond to them.

Aside from debugging information output, none of the following passes refers to the tree struc-

ture representation of the function (only part of which is saved).

The decision of whether the function can and should be expanded inline in its subsequent

callers is made at the end of rtl generation. The function must meet certain criteria, currently

related to the size of the function and the types and number of parameters it has. Note that this

function may contain loops, recursive calls to itself (tail-recursive functions can be inlined!),

gotos, in short, all constructs supported by GNU CC. The file ‘integrate.c’ contains the code

to save a function’s rtl for later inlining and to inline that rtl when the function is called. The

header file ‘integrate.h’ is also used for this purpose.

The option ‘-dr’ causes a debugging dump of the RTL code after this pass. This dump file’s

name is made by appending ‘.rtl’ to the input file name.

• Jump optimization. This pass simplifies jumps to the following instruction, jumps across

jumps, and jumps to jumps. It deletes unreferenced labels and unreachable code, except that

unreachable code that contains a loop is not recognized as unreachable in this pass. (Such loops

are deleted later in the basic block analysis.) It also converts some code originally written with

jumps into sequences of instructions that directly set values from the results of comparisons,

if the machine has such instructions.

Chapter 11: Passes and Files of the Compiler 163

Jump optimization is performed two or three times. The first time is immediately following

RTL generation. The second time is after CSE, but only if CSE says repeated jump opti-

mization is needed. The last time is right before the final pass. That time, cross-jumping and

deletion of no-op move instructions are done together with the optimizations described above.

The source file of this pass is ‘jump.c’.

The option ‘-dj’ causes a debugging dump of the RTL code after this pass is run for the first

time. This dump file’s name is made by appending ‘.jump’ to the input file name.

• Register scan. This pass finds the first and last use of each register, as a guide for common

subexpression elimination. Its source is in ‘regclass.c’.

• Jump threading. This pass detects a condition jump that branches to an identical or inverse

test. Such jumps can be ‘threaded’ through the second conditional test. The source code for

this pass is in ‘jump.c’. This optimization is only performed if ‘-fthread-jumps’ is enabled.

• Common subexpression elimination. This pass also does constant propagation. Its source file

is ‘cse.c’. If constant propagation causes conditional jumps to become unconditional or to

become no-ops, jump optimization is run again when CSE is finished.

The option ‘-ds’ causes a debugging dump of the RTL code after this pass. This dump file’s

name is made by appending ‘.cse’ to the input file name.

• Loop optimization. This pass moves constant expressions out of loops, and optionally does

strength-reduction and loop unrolling as well. Its source files are ‘loop.c’ and ‘unroll.c’,

plus the header ‘loop.h’ used for communication between them. Loop unrolling uses some

functions in ‘integrate.c’ and the header ‘integrate.h’.

The option ‘-dL’ causes a debugging dump of the RTL code after this pass. This dump file’s

name is made by appending ‘.loop’ to the input file name.

• If ‘-frerun-cse-after-loop’ was enabled, a second common subexpression elimination pass

is performed after the loop optimization pass. Jump threading is also done again at this time

if it was specified.

The option ‘-dt’ causes a debugging dump of the RTL code after this pass. This dump file’s

name is made by appending ‘.cse2’ to the input file name.

• Stupid register allocation is performed at this point in a nonoptimizing compilation. It does a

little data flow analysis as well. When stupid register allocation is in use, the next pass executed

is the reloading pass; the others in between are skipped. The source file is ‘stupid.c’.

• Data flow analysis (‘flow.c’). This pass divides the program into basic blocks (and in the

process deletes unreachable loops); then it computes which pseudo-registers are live at each

point in the program, and makes the first instruction that uses a value point at the instruction

that computed the value.

This pass also deletes computations whose results are never used, and combines memory refer-

ences with add or subtract instructions to make autoincrement or autodecrement addressing.

164 Using and Porting GNU CC

The option ‘-df’ causes a debugging dump of the RTL code after this pass. This dump file’s

name is made by appending ‘.flow’ to the input file name. If stupid register allocation is in

use, this dump file reflects the full results of such allocation.

• Instruction combination (‘combine.c’). This pass attempts to combine groups of two or three

instructions that are related by data flow into single instructions. It combines the RTL expres-

sions for the instructions by substitution, simplifies the result using algebra, and then attempts

to match the result against the machine description.

The option ‘-dc’ causes a debugging dump of the RTL code after this pass. This dump file’s

name is made by appending ‘.combine’ to the input file name.

• Instruction scheduling (‘sched.c’). This pass looks for instructions whose output will not be

available by the time that it is used in subsequent instructions. (Memory loads and floating

point instructions often have this behavior on RISC machines). It re-orders instructions within

a basic block to try to separate the definition and use of items that otherwise would cause

pipeline stalls.

Instruction scheduling is performed twice. The first time is immediately after instruction

combination and the second is immediately after reload.

The option ‘-dS’ causes a debugging dump of the RTL code after this pass is run for the first

time. The dump file’s name is made by appending ‘.sched’ to the input file name.

• Register class preferencing. The RTL code is scanned to find out which register class is best

for each pseudo register. The source file is ‘regclass.c’.

• Local register allocation (‘local-alloc.c’). This pass allocates hard registers to pseudo reg-

isters that are used only within one basic block. Because the basic block is linear, it can use

fast and powerful techniques to do a very good job.

The option ‘-dl’ causes a debugging dump of the RTL code after this pass. This dump file’s

name is made by appending ‘.lreg’ to the input file name.

• Global register allocation (‘global.c’). This pass allocates hard registers for the remaining

pseudo registers (those whose life spans are not contained in one basic block).

• Reloading. This pass renumbers pseudo registers with the hardware registers numbers they

were allocated. Pseudo registers that did not get hard registers are replaced with stack slots.

Then it finds instructions that are invalid because a value has failed to end up in a register,

or has ended up in a register of the wrong kind. It fixes up these instructions by reloading

the problematical values temporarily into registers. Additional instructions are generated to

do the copying.

The reload pass also optionally eliminates the frame pointer and inserts instructions to save

and restore call-clobbered registers around calls.

Source files are ‘reload.c’ and ‘reload1.c’, plus the header ‘reload.h’ used for communica-

tion between them.

The option ‘-dg’ causes a debugging dump of the RTL code after this pass. This dump file’s

name is made by appending ‘.greg’ to the input file name.

Chapter 11: Passes and Files of the Compiler 165

• Instruction scheduling is repeated here to try to avoid pipeline stalls due to memory loads

generated for spilled pseudo registers.

The option ‘-dR’ causes a debugging dump of the RTL code after this pass. This dump file’s

name is made by appending ‘.sched2’ to the input file name.

• Jump optimization is repeated, this time including cross-jumping and deletion of no-op move

instructions.

The option ‘-dJ’ causes a debugging dump of the RTL code after this pass. This dump file’s

name is made by appending ‘.jump2’ to the input file name.

• Delayed branch scheduling. This optional pass attempts to find instructions that can go into

the delay slots of other instructions, usually jumps and calls. The source file name is ‘reorg.c’.

The option ‘-dd’ causes a debugging dump of the RTL code after this pass. This dump file’s

name is made by appending ‘.dbr’ to the input file name.

• Conversion from usage of some hard registers to usage of a register stack may be done at

this point. Currently, this is supported only for the floating-point registers of the Intel 80387

coprocessor. The source file name is ‘reg-stack.c’.

The options ‘-dk’ causes a debugging dump of the RTL code after this pass. This dump file’s

name is made by appending ‘.stack’ to the input file name.

• Final. This pass outputs the assembler code for the function. It is also responsible for iden-

tifying spurious test and compare instructions. Machine-specific peephole optimizations are

performed at the same time. The function entry and exit sequences are generated directly as

assembler code in this pass; they never exist as RTL.

The source files are ‘final.c’ plus ‘insn-output.c’; the latter is generated automatically from

the machine description by the tool ‘genoutput’. The header file ‘conditions.h’ is used for

communication between these files.

• Debugging information output. This is run after final because it must output the stack slot

offsets for pseudo registers that did not get hard registers. Source files are ‘dbxout.c’ for DBX

symbol table format, ‘sdbout.c’ for SDB symbol table format, and ‘dwarfout.c’ for DWARF

symbol table format.

Some additional files are used by all or many passes:

• Every pass uses ‘machmode.def’ and ‘machmode.h’ which define the machine modes.

• Several passes use ‘real.h’, which defines the default representation of floating point constants

and how to operate on them.

• All the passes that work with RTL use the header files ‘rtl.h’ and ‘rtl.def’, and subroutines

in file ‘rtl.c’. The tools gen* also use these files to read and work with the machine description

RTL.

166 Using and Porting GNU CC

• Several passes refer to the header file ‘insn-config.h’ which contains a few parameters (C

macro definitions) generated automatically from the machine description RTL by the tool

genconfig.

• Several passes use the instruction recognizer, which consists of ‘recog.c’ and ‘recog.h’, plus

the files ‘insn-recog.c’ and ‘insn-extract.c’ that are generated automatically from the

machine description by the tools ‘genrecog’ and ‘genextract’.

• Several passes use the header files ‘regs.h’ which defines the information recorded about

pseudo register usage, and ‘basic-block.h’ which defines the information recorded about

basic blocks.

• ‘hard-reg-set.h’ defines the type HARD_REG_SET, a bit-vector with a bit for each hard register,

and some macros to manipulate it. This type is just int if the machine has few enough hard

registers; otherwise it is an array of int and some of the macros expand into loops.

• Several passes use instruction attributes. A definition of the attributes defined for a particular

machine is in file ‘insn-attr.h’, which is generated from the machine description by the

program ‘genattr’. The file ‘insn-attrtab.c’ contains subroutines to obtain the attribute

values for insns. It is generated from the machine description by the program ‘genattrtab’.

Chapter 12: RTL Representation 167

12 RTL Representation

Most of the work of the compiler is done on an intermediate representation called register transfer

language. In this language, the instructions to be output are described, pretty much one by one,

in an algebraic form that describes what the instruction does.

RTL is inspired by Lisp lists. It has both an internal form, made up of structures that point at

other structures, and a textual form that is used in the machine description and in printed debugging

dumps. The textual form uses nested parentheses to indicate the pointers in the internal form.

12.1 RTL Object Types

RTL uses five kinds of objects: expressions, integers, wide integers, strings and vectors. Expres-

sions are the most important ones. An RTL expression (“RTX”, for short) is a C structure, but it

is usually referred to with a pointer; a type that is given the typedef name rtx.

An integer is simply an int; their written form uses decimal digits. A wide integer is an integral

object whose type is HOST_WIDE_INT (see Chapter 15 [Config], page 355); their written form used

decimal digits.

A string is a sequence of characters. In core it is represented as a char * in usual C fashion, and

it is written in C syntax as well. However, strings in RTL may never be null. If you write an empty

string in a machine description, it is represented in core as a null pointer rather than as a pointer

to a null character. In certain contexts, these null pointers instead of strings are valid. Within RTL

code, strings are most commonly found inside symbol_ref expressions, but they appear in other

contexts in the RTL expressions that make up machine descriptions.

A vector contains an arbitrary number of pointers to expressions. The number of elements in the

vector is explicitly present in the vector. The written form of a vector consists of square brackets

(‘[. . .]’) surrounding the elements, in sequence and with whitespace separating them. Vectors of

length zero are not created; null pointers are used instead.

Expressions are classified by expression codes (also called RTX codes). The expression code

is a name defined in ‘rtl.def’, which is also (in upper case) a C enumeration constant. The

possible expression codes and their meanings are machine-independent. The code of an RTX can

be extracted with the macro GET_CODE (x) and altered with PUT_CODE (x, newcode).

168 Using and Porting GNU CC

The expression code determines how many operands the expression contains, and what kinds

of objects they are. In RTL, unlike Lisp, you cannot tell by looking at an operand what kind of

object it is. Instead, you must know from its context—from the expression code of the containing

expression. For example, in an expression of code subreg, the first operand is to be regarded as

an expression and the second operand as an integer. In an expression of code plus, there are two

operands, both of which are to be regarded as expressions. In a symbol_ref expression, there is

one operand, which is to be regarded as a string.

Expressions are written as parentheses containing the name of the expression type, its flags and

machine mode if any, and then the operands of the expression (separated by spaces).

Expression code names in the ‘md’ file are written in lower case, but when they appear in C code

they are written in upper case. In this manual, they are shown as follows: const_int.

In a few contexts a null pointer is valid where an expression is normally wanted. The written

form of this is (nil).

12.2 Access to Operands

For each expression type ‘rtl.def’ specifies the number of contained objects and their kinds,

with four possibilities: ‘e’ for expression (actually a pointer to an expression), ‘i’ for integer, ‘w’

for wide integer, ‘s’ for string, and ‘E’ for vector of expressions. The sequence of letters for an

expression code is called its format. Thus, the format of subreg is ‘ei’.

A few other format characters are used occasionally:

u ‘u’ is equivalent to ‘e’ except that it is printed differently in debugging dumps. It is

used for pointers to insns.

n ‘n’ is equivalent to ‘i’ except that it is printed differently in debugging dumps. It is

used for the line number or code number of a note insn.

S ‘S’ indicates a string which is optional. In the RTL objects in core, ‘S’ is equivalent to

‘s’, but when the object is read, from an ‘md’ file, the string value of this operand may

be omitted. An omitted string is taken to be the null string.

V ‘V’ indicates a vector which is optional. In the RTL objects in core, ‘V’ is equivalent to

‘E’, but when the object is read from an ‘md’ file, the vector value of this operand may

be omitted. An omitted vector is effectively the same as a vector of no elements.

Chapter 12: RTL Representation 169

0 ‘0’ means a slot whose contents do not fit any normal category. ‘0’ slots are not printed

at all in dumps, and are often used in special ways by small parts of the compiler.

There are macros to get the number of operands, the format, and the class of an expression

code:

GET_RTX_LENGTH (code)

Number of operands of an RTX of code code.

GET_RTX_FORMAT (code)

The format of an RTX of code code, as a C string.

GET_RTX_CLASS (code)

A single character representing the type of RTX operation that code code performs.

The following classes are defined:

o An RTX code that represents an actual object, such as reg or mem. subreg

is not in this class.

< An RTX code for a comparison. The codes in this class are NE, EQ, LE, LT,

GE, GT, LEU, LTU, GEU, GTU.

1 An RTX code for a unary arithmetic operation, such as neg.

c An RTX code for a commutative binary operation, other than NE and EQ

(which have class ‘<’).

2 An RTX code for a noncommutative binary operation, such as MINUS.

b An RTX code for a bitfield operation (ZERO_EXTRACT and SIGN_EXTRACT).

3 An RTX code for other three input operations, such as IF_THEN_ELSE.

i An RTX code for a machine insn (INSN, JUMP_INSN, and CALL_INSN).

m An RTX code for something that matches in insns, such as MATCH_DUP.

x All other RTX codes.

Operands of expressions are accessed using the macros XEXP, XINT, XWINT and XSTR. Each of

these macros takes two arguments: an expression-pointer (RTX) and an operand number (counting

from zero). Thus,

XEXP (x, 2)

accesses operand 2 of expression x, as an expression.

170 Using and Porting GNU CC

XINT (x, 2)

accesses the same operand as an integer. XSTR, used in the same fashion, would access it as a string.

Any operand can be accessed as an integer, as an expression or as a string. You must choose

the correct method of access for the kind of value actually stored in the operand. You would do

this based on the expression code of the containing expression. That is also how you would know

how many operands there are.

For example, if x is a subreg expression, you know that it has two operands which can be

correctly accessed as XEXP (x, 0) and XINT (x, 1). If you did XINT (x, 0), you would get the

address of the expression operand but cast as an integer; that might occasionally be useful, but

it would be cleaner to write (int) XEXP (x, 0). XEXP (x, 1) would also compile without error,

and would return the second, integer operand cast as an expression pointer, which would probably

result in a crash when accessed. Nothing stops you from writing XEXP (x, 28) either, but this will

access memory past the end of the expression with unpredictable results.

Access to operands which are vectors is more complicated. You can use the macro XVEC to get

the vector-pointer itself, or the macros XVECEXP and XVECLEN to access the elements and length of

a vector.

XVEC (exp, idx)

Access the vector-pointer which is operand number idx in exp.

XVECLEN (exp, idx)

Access the length (number of elements) in the vector which is in operand number idx

in exp. This value is an int.

XVECEXP (exp, idx, eltnum)

Access element number eltnum in the vector which is in operand number idx in exp.

This value is an RTX.

It is up to you to make sure that eltnum is not negative and is less than XVECLEN (exp,

idx).

All the macros defined in this section expand into lvalues and therefore can be used to assign

the operands, lengths and vector elements as well as to access them.

Chapter 12: RTL Representation 171

12.3 Flags in an RTL Expression

RTL expressions contain several flags (one-bit bit-fields) that are used in certain types of ex-

pression. Most often they are accessed with the following macros:

MEM_VOLATILE_P (x)

In mem expressions, nonzero for volatile memory references. Stored in the volatil field

and printed as ‘/v’.

MEM_IN_STRUCT_P (x)

In mem expressions, nonzero for reference to an entire structure, union or array, or to

a component of one. Zero for references to a scalar variable or through a pointer to a

scalar. Stored in the in_struct field and printed as ‘/s’.

REG_LOOP_TEST_P

In reg expressions, nonzero if this register’s entire life is contained in the exit test code

for some loop. Stored in the in_struct field and printed as ‘/s’.

REG_USERVAR_P (x)

In a reg, nonzero if it corresponds to a variable present in the user’s source code. Zero

for temporaries generated internally by the compiler. Stored in the volatil field and

printed as ‘/v’.

REG_FUNCTION_VALUE_P (x)

Nonzero in a reg if it is the place in which this function’s value is going to be returned.

(This happens only in a hard register.) Stored in the integrated field and printed as

‘/i’.

The same hard register may be used also for collecting the values of functions called

by this one, but REG_FUNCTION_VALUE_P is zero in this kind of use.

SUBREG_PROMOTED_VAR_P

Nonzero in a subreg if it was made when accessing an object that was promoted

to a wider mode in accord with the PROMOTED_MODE machine description macro (see

Section 14.3 [Storage Layout], page 271). In this case, the mode of the subreg is the

declared mode of the object and the mode of SUBREG_REG is the mode of the register

that holds the object. Promoted variables are always either sign- or zero-extended to

the wider mode on every assignment. Stored in the in_struct field and printed as

‘/s’.

SUBREG_PROMOTED_UNSIGNED_P

Nonzero in a subreg that has SUBREG_PROMOTED_VAR_P nonzero if the object being

referenced is kept zero-extended and zero if it is kept sign-extended. Stored in the

unchanging field and printed as ‘/u’.

172 Using and Porting GNU CC

RTX_UNCHANGING_P (x)

Nonzero in a reg or mem if the value is not changed. (This flag is not set for memory

references via pointers to constants. Such pointers only guarantee that the object will

not be changed explicitly by the current function. The object might be changed by

other functions or by aliasing.) Stored in the unchanging field and printed as ‘/u’.

RTX_INTEGRATED_P (insn)

Nonzero in an insn if it resulted from an in-line function call. Stored in the integrated

field and printed as ‘/i’. This may be deleted; nothing currently depends on it.

SYMBOL_REF_USED (x)

In a symbol_ref, indicates that x has been used. This is normally only used to ensure

that x is only declared external once. Stored in the used field.

SYMBOL_REF_FLAG (x)

In a symbol_ref, this is used as a flag for machine-specific purposes. Stored in the

volatil field and printed as ‘/v’.

LABEL_OUTSIDE_LOOP_P

In label_ref expressions, nonzero if this is a reference to a label that is outside the

innermost loop containing the reference to the label. Stored in the in_struct field and

printed as ‘/s’.

INSN_DELETED_P (insn)

In an insn, nonzero if the insn has been deleted. Stored in the volatil field and printed

as ‘/v’.

INSN_ANNULLED_BRANCH_P (insn)

In an insn in the delay slot of a branch insn, indicates that an annulling branch should

be used. See the discussion under sequence below. Stored in the unchanging field and

printed as ‘/u’.

INSN_FROM_TARGET_P (insn)

In an insn in a delay slot of a branch, indicates that the insn is from the target of the

branch. If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only

be executed if the branch is taken. For annulled branches with this bit clear, the insn

should be executed only if the branch is not taken. Stored in the in_struct field and

printed as ‘/s’.

CONSTANT_POOL_ADDRESS_P (x)

Nonzero in a symbol_ref if it refers to part of the current function’s “constants pool”.

These are addresses close to the beginning of the function, and GNU CC assumes

they can be addressed directly (perhaps with the help of base registers). Stored in the

unchanging field and printed as ‘/u’.

Chapter 12: RTL Representation 173

CONST_CALL_P (x)

In a call_insn, indicates that the insn represents a call to a const function. Stored in

the unchanging field and printed as ‘/u’.

LABEL_PRESERVE_P (x)

In a code_label, indicates that the label can never be deleted. Labels referenced by a

non-local goto will have this bit set. Stored in the in_struct field and printed as ‘/s’.

SCHED_GROUP_P (insn)

During instruction scheduling, in an insn, indicates that the previous insn must be

scheduled together with this insn. This is used to ensure that certain groups of in-

structions will not be split up by the instruction scheduling pass, for example, use

insns before a call_insn may not be separated from the call_insn. Stored in the

in_struct field and printed as ‘/s’.

These are the fields which the above macros refer to:

used Normally, this flag is used only momentarily, at the end of RTL generation for a func-

tion, to count the number of times an expression appears in insns. Expressions that

appear more than once are copied, according to the rules for shared structure (see

Section 12.17 [Sharing], page 207).

In a symbol_ref, it indicates that an external declaration for the symbol has already

been written.

In a reg, it is used by the leaf register renumbering code to ensure that each register

is only renumbered once.

volatil This flag is used in mem, symbol_ref and reg expressions and in insns. In RTL dump

files, it is printed as ‘/v’.

In a mem expression, it is 1 if the memory reference is volatile. Volatile memory refer-

ences may not be deleted, reordered or combined.

In a symbol_ref expression, it is used for machine-specific purposes.

In a reg expression, it is 1 if the value is a user-level variable. 0 indicates an internal

compiler temporary.

In an insn, 1 means the insn has been deleted.

in_struct

In mem expressions, it is 1 if the memory datum referred to is all or part of a structure

or array; 0 if it is (or might be) a scalar variable. A reference through a C pointer

has 0 because the pointer might point to a scalar variable. This information allows the

compiler to determine something about possible cases of aliasing.

174 Using and Porting GNU CC

In an insn in the delay slot of a branch, 1 means that this insn is from the target of

the branch.

During instruction scheduling, in an insn, 1 means that this insn must be scheduled as

part of a group together with the previous insn.

In reg expressions, it is 1 if the register has its entire life contained within the test

expression of some loopl.

In subreg expressions, 1 means that the subreg is accessing an object that has had its

mode promoted from a wider mode.

In label_ref expressions, 1 means that the referenced label is outside the innermost

loop containing the insn in which the label_ref was found.

In code_label expressions, it is 1 if the label may never be deleted. This is used for

labels which are the target of non-local gotos.

In an RTL dump, this flag is represented as ‘/s’.

unchanging

In reg and mem expressions, 1 means that the value of the expression never changes.

In subreg expressions, it is 1 if the subreg references an unsigned object whose mode

has been promoted to a wider mode.

In an insn, 1 means that this is an annulling branch.

In a symbol_ref expression, 1 means that this symbol addresses something in the

per-function constants pool.

In a call_insn, 1 means that this instruction is a call to a const function.

In an RTL dump, this flag is represented as ‘/u’.

integrated

In some kinds of expressions, including insns, this flag means the rtl was produced by

procedure integration.

In a reg expression, this flag indicates the register containing the value to be returned

by the current function. On machines that pass parameters in registers, the same

register number may be used for parameters as well, but this flag is not set on such

uses.

12.4 Machine Modes

A machine mode describes a size of data object and the representation used for it. In the

C code, machine modes are represented by an enumeration type, enum machine_mode, defined in

‘machmode.def’. Each RTL expression has room for a machine mode and so do certain kinds of

tree expressions (declarations and types, to be precise).

Chapter 12: RTL Representation 175

In debugging dumps and machine descriptions, the machine mode of an RTL expression is

written after the expression code with a colon to separate them. The letters ‘mode’ which appear

at the end of each machine mode name are omitted. For example, (reg:SI 38) is a reg expression

with machine mode SImode. If the mode is VOIDmode, it is not written at all.

Here is a table of machine modes. The term “byte” below refers to an object of BITS_PER_UNIT

bits (see Section 14.3 [Storage Layout], page 271).

QImode “Quarter-Integer” mode represents a single byte treated as an integer.

HImode “Half-Integer” mode represents a two-byte integer.

PSImode “Partial Single Integer” mode represents an integer which occupies four bytes but which

doesn’t really use all four. On some machines, this is the right mode to use for pointers.

SImode “Single Integer” mode represents a four-byte integer.

PDImode “Partial Double Integer” mode represents an integer which occupies eight bytes but

which doesn’t really use all eight. On some machines, this is the right mode to use for

certain pointers.

DImode “Double Integer” mode represents an eight-byte integer.

TImode “Tetra Integer” (?) mode represents a sixteen-byte integer.

SFmode “Single Floating” mode represents a single-precision (four byte) floating point number.

DFmode “Double Floating” mode represents a double-precision (eight byte) floating point num-

ber.

XFmode “Extended Floating” mode represents a triple-precision (twelve byte) floating point

number. This mode is used for IEEE extended floating point.

TFmode “Tetra Floating” mode represents a quadruple-precision (sixteen byte) floating point

number.

CCmode “Condition Code” mode represents the value of a condition code, which is a machine-

specific set of bits used to represent the result of a comparison operation. Other

machine-specific modes may also be used for the condition code. These modes are not

used on machines that use cc0 (see see Section 14.12 [Condition Code], page 318).

BLKmode “Block” mode represents values that are aggregates to which none of the other modes

apply. In RTL, only memory references can have this mode, and only if they appear

in string-move or vector instructions. On machines which have no such instructions,

BLKmode will not appear in RTL.

VOIDmode Void mode means the absence of a mode or an unspecified mode. For example, RTL

expressions of code const_int have mode VOIDmode because they can be taken to

have whatever mode the context requires. In debugging dumps of RTL, VOIDmode is

expressed by the absence of any mode.

176 Using and Porting GNU CC

SCmode, DCmode, XCmode, TCmode

These modes stand for a complex number represented as a pair of floating point values.

The values are in SFmode, DFmode, XFmode, and TFmode, respectively. Since C does not

support complex numbers, these machine modes are only partially implemented.

The machine description defines Pmode as a C macro which expands into the machine mode used

for addresses. Normally this is the mode whose size is BITS_PER_WORD, SImode on 32-bit machines.

The only modes which a machine description must support are QImode, and the modes corre-

sponding to BITS_PER_WORD, FLOAT_TYPE_SIZE and DOUBLE_TYPE_SIZE. The compiler will attempt

to use DImode for 8-byte structures and unions, but this can be prevented by overriding the defi-

nition of MAX_FIXED_MODE_SIZE. Alternatively, you can have the compiler use TImode for 16-byte

structures and unions. Likewise, you can arrange for the C type short int to avoid using HImode.

Very few explicit references to machine modes remain in the compiler and these few references

will soon be removed. Instead, the machine modes are divided into mode classes. These are

represented by the enumeration type enum mode_class defined in ‘machmode.h’. The possible

mode classes are:

MODE_INT Integer modes. By default these are QImode, HImode, SImode, DImode, and TImode.

MODE_PARTIAL_INT

The “partial integer” modes, PSImode and PDImode.

MODE_FLOAT

floating point modes. By default these are SFmode, DFmode, XFmode and TFmode.

MODE_COMPLEX_INT

Complex integer modes. (These are not currently implemented).

MODE_COMPLEX_FLOAT

Complex floating point modes. By default these are SCmode, DCmode, XCmode, and

TCmode.

MODE_FUNCTION

Algol or Pascal function variables including a static chain. (These are not currently

implemented).

MODE_CC Modes representing condition code values. These are CCmode plus any modes listed

in the EXTRA_CC_MODES macro. See Section 13.10 [Jump Patterns], page 238, also see

Section 14.12 [Condition Code], page 318.

Chapter 12: RTL Representation 177

MODE_RANDOM

This is a catchall mode class for modes which don’t fit into the above classes. Currently

VOIDmode and BLKmode are in MODE_RANDOM.

Here are some C macros that relate to machine modes:

GET_MODE (x)

Returns the machine mode of the RTX x.

PUT_MODE (x, newmode)

Alters the machine mode of the RTX x to be newmode.

NUM_MACHINE_MODES

Stands for the number of machine modes available on the target machine. This is one

greater than the largest numeric value of any machine mode.

GET_MODE_NAME (m)

Returns the name of mode m as a string.

GET_MODE_CLASS (m)

Returns the mode class of mode m.

GET_MODE_WIDER_MODE (m)

Returns the next wider natural mode. E.g., GET_WIDER_MODE(QImode) returns HImode.

GET_MODE_SIZE (m)

Returns the size in bytes of a datum of mode m.

GET_MODE_BITSIZE (m)

Returns the size in bits of a datum of mode m.

GET_MODE_MASK (m)

Returns a bitmask containing 1 for all bits in a word that fit within modem. This macro

can only be used for modes whose bitsize is less than or equal to HOST_BITS_PER_INT.

GET_MODE_ALIGNMENT (m))

Return the required alignment, in bits, for an object of mode m.

GET_MODE_UNIT_SIZE (m)

Returns the size in bytes of the subunits of a datum of mode m. This is the same as

GET_MODE_SIZE except in the case of complex modes. For them, the unit size is the

size of the real or imaginary part.

GET_MODE_NUNITS (m)

Returns the number of units contained in a mode, i.e., GET_MODE_SIZE divided by

GET_MODE_UNIT_SIZE.

178 Using and Porting GNU CC

GET_CLASS_NARROWEST_MODE (c)

Returns the narrowest mode in mode class c.

The global variables byte_mode and word_mode contain modes whose classes are MODE_INT and

whose bitsizes are BITS_PER_UNIT or BITS_PER_WORD, respectively. On 32-bit machines, these are

QImode and SImode, respectively.

12.5 Constant Expression Types

The simplest RTL expressions are those that represent constant values.

(const_int i)

This type of expression represents the integer value i. i is customarily accessed with

the macro INTVAL as in INTVAL (exp), which is equivalent to XWINT (exp, 0).

There is only one expression object for the integer value zero; it is the value of the

variable const0_rtx. Likewise, the only expression for integer value one is found in

const1_rtx, the only expression for integer value two is found in const2_rtx, and the

only expression for integer value negative one is found in constm1_rtx. Any attempt

to create an expression of code const_int and value zero, one, two or negative one will

return const0_rtx, const1_rtx, const2_rtx or constm1_rtx as appropriate.

Similarly, there is only one object for the integer whose value is STORE_FLAG_VALUE.

It is found in const_true_rtx. If STORE_FLAG_VALUE is one, const_true_rtx and

const1_rtx will point to the same object. If STORE_FLAG_VALUE is -1, const_true_rtx

and constm1_rtx will point to the same object.

(const_double:m addr i0 i1 . . .)

Represents either a floating-point constant of mode m or an integer constant that is

too large to fit into HOST_BITS_PER_WIDE_INT bits but small enough to fit within twice

that number of bits (GNU CC does not provide a mechanism to represent even larger

constants). In the latter case, m will be VOIDmode.

addr is used to contain the mem expression that corresponds to the location in memory

that at which the constant can be found. If it has not been allocated a memory location,

but is on the chain of all const_double expressions in this compilation (maintained

using an undisplayed field), addr contains const0_rtx. If it is not on the chain, addr

contains cc0_rtx. addr is customarily accessed with the macro CONST_DOUBLE_MEM

and the chain field via CONST_DOUBLE_CHAIN.

Chapter 12: RTL Representation 179

If m is VOIDmode, the bits of the value are stored in i0 and i1. i0 is customarily accessed

with the macro CONST_DOUBLE_LOW and i1 with CONST_DOUBLE_HIGH.

If the constant is floating point (either single or double precision), then the number

of integers used to store the value depends on the size of REAL_VALUE_TYPE (see Sec-

tion 14.18 [Cross-compilation], page 347). The integers represent a double. To convert

them to a double, do

union real_extract u;
bcopy (&CONST_DOUBLE_LOW (x), &u, sizeof u);

and then refer to u.d.

The macro CONST0_RTX (mode) refers to an expression with value 0 in mode mode. If

mode mode is of mode class MODE_INT, it returns const0_rtx. Otherwise, it returns

a CONST_DOUBLE expression in mode mode. Similarly, the macro CONST1_RTX (mode)

refers to an expression with value 1 in mode mode and similarly for CONST2_RTX.

(const_string str)

Represents a constant string with value str. Currently this is used only for insn at-

tributes (see Section 13.15 [Insn Attributes], page 251) since constant strings in C are

placed in memory.

(symbol_ref:mode symbol)

Represents the value of an assembler label for data. symbol is a string that describes

the name of the assembler label. If it starts with a ‘*’, the label is the rest of symbol

not including the ‘*’. Otherwise, the label is symbol, usually prefixed with ‘_’.

The symbol_ref contains a mode, which is usually Pmode. Usually that is the only

mode for which a symbol is directly valid.

(label_ref label)

Represents the value of an assembler label for code. It contains one operand, an

expression, which must be a code_label that appears in the instruction sequence to

identify the place where the label should go.

The reason for using a distinct expression type for code label references is so that jump

optimization can distinguish them.

(const:m exp)

Represents a constant that is the result of an assembly-time arithmetic computa-

tion. The operand, exp, is an expression that contains only constants (const_int,

symbol_ref and label_ref expressions) combined with plus and minus. However,

not all combinations are valid, since the assembler cannot do arbitrary arithmetic on

relocatable symbols.

m should be Pmode.

180 Using and Porting GNU CC

(high:m exp)

Represents the high-order bits of exp, usually a symbol_ref. The number of bits is

machine-dependent and is normally the number of bits specified in an instruction that

initializes the high order bits of a register. It is used with lo_sum to represent the

typical two-instruction sequence used in RISC machines to reference a global memory

location.

m should be Pmode.

12.6 Registers and Memory

Here are the RTL expression types for describing access to machine registers and to main

memory.

(reg:m n)

For small values of the integer n (less than FIRST_PSEUDO_REGISTER), this stands for

a reference to machine register number n: a hard register. For larger values of n, it

stands for a temporary value or pseudo register. The compiler’s strategy is to generate

code assuming an unlimited number of such pseudo registers, and later convert them

into hard registers or into memory references.

m is the machine mode of the reference. It is necessary because machines can generally

refer to each register in more than one mode. For example, a register may contain a

full word but there may be instructions to refer to it as a half word or as a single byte,

as well as instructions to refer to it as a floating point number of various precisions.

Even for a register that the machine can access in only one mode, the mode must

always be specified.

The symbol FIRST_PSEUDO_REGISTER is defined by the machine description, since the

number of hard registers on the machine is an invariant characteristic of the machine.

Note, however, that not all of the machine registers must be general registers. All the

machine registers that can be used for storage of data are given hard register numbers,

even those that can be used only in certain instructions or can hold only certain types

of data.

A hard register may be accessed in various modes throughout one function, but each

pseudo register is given a natural mode and is accessed only in that mode. When it is

necessary to describe an access to a pseudo register using a nonnatural mode, a subreg

expression is used.

A reg expression with a machine mode that specifies more than one word of data

may actually stand for several consecutive registers. If in addition the register number

Chapter 12: RTL Representation 181

specifies a hardware register, then it actually represents several consecutive hardware

registers starting with the specified one.

Each pseudo register number used in a function’s RTL code is represented by a unique

reg expression.

Some pseudo register numbers, those within the range of FIRST_VIRTUAL_REGISTER

to LAST_VIRTUAL_REGISTER only appear during the RTL generation phase and are

eliminated before the optimization phases. These represent locations in the stack frame

that cannot be determined until RTL generation for the function has been completed.

The following virtual register numbers are defined:

VIRTUAL_INCOMING_ARGS_REGNUM

This points to the first word of the incoming arguments passed on the

stack. Normally these arguments are placed there by the caller, but the

callee may have pushed some arguments that were previously passed in

registers.

When RTL generation is complete, this virtual register is replaced by

the sum of the register given by ARG_POINTER_REGNUM and the value of

FIRST_PARM_OFFSET.

VIRTUAL_STACK_VARS_REGNUM

If FRAME_GROWS_DOWNWARDS is defined, this points to immediately above

the first variable on the stack. Otherwise, it points to the first variable on

the stack.

It is replaced with the sum of the register given by FRAME_POINTER_REGNUM

and the value STARTING_FRAME_OFFSET.

VIRTUAL_STACK_DYNAMIC_REGNUM

This points to the location of dynamically allocated memory on the stack

immediately after the stack pointer has been adjusted by the amount of

memory desired.

It is replaced by the sum of the register given by STACK_POINTER_REGNUM

and the value STACK_DYNAMIC_OFFSET.

VIRTUAL_OUTGOING_ARGS_REGNUM

This points to the location in the stack at which outgoing arguments should

be written when the stack is pre-pushed (arguments pushed using push

insns should always use STACK_POINTER_REGNUM).

It is replaced by the sum of the register given by STACK_POINTER_REGNUM

and the value STACK_POINTER_OFFSET.

182 Using and Porting GNU CC

(subreg:m reg wordnum)

subreg expressions are used to refer to a register in a machine mode other than its

natural one, or to refer to one register of a multi-word reg that actually refers to several

registers.

Each pseudo-register has a natural mode. If it is necessary to operate on it in a different

mode—for example, to perform a fullword move instruction on a pseudo-register that

contains a single byte—the pseudo-register must be enclosed in a subreg. In such a

case, wordnum is zero.

Usually m is at least as narrow as the mode of reg, in which case it is restricting

consideration to only the bits of reg that are in m. However, sometimes m is wider

than the mode of reg. These subreg expressions are often called paradoxical. They are

used in cases where we want to refer to an object in a wider mode but do not care what

value the additional bits have. The reload pass ensures that paradoxical references are

only made to hard registers.

The other use of subreg is to extract the individual registers of a multi-register value.

Machine modes such as DImode and TImode can indicate values longer than a word,

values which usually require two or more consecutive registers. To access one of the

registers, use a subreg with mode SImode and a wordnum that says which register.

The compilation parameter WORDS_BIG_ENDIAN, if set to 1, says that word number zero

is the most significant part; otherwise, it is the least significant part.

Between the combiner pass and the reload pass, it is possible to have a paradoxical

subreg which contains a mem instead of a reg as its first operand. After the reload

pass, it is also possible to have a non-paradoxical subreg which contains a mem; this

usually occurs when the mem is a stack slot which replaced a pseudo register.

Note that it is not valid to access a DFmode value in SFmode using a subreg. On some

machines the most significant part of a DFmode value does not have the same format as

a single-precision floating value.

It is also not valid to access a single word of a multi-word value in a hard register when

less registers can hold the value than would be expected from its size. For example,

some 32-bit machines have floating-point registers that can hold an entire DFmode value.

If register 10 were such a register (subreg:SI (reg:DF 10) 1) would be invalid because

there is no way to convert that reference to a single machine register. The reload pass

prevents subreg expressions such as these from being formed.

The first operand of a subreg expression is customarily accessed with the SUBREG_REG

macro and the second operand is customarily accessed with the SUBREG_WORD macro.

(scratch:m)

This represents a scratch register that will be required for the execution of a single

instruction and not used subsequently. It is converted into a reg by either the local

register allocator or the reload pass.

Chapter 12: RTL Representation 183

scratch is usually present inside a clobber operation (see Section 12.12 [Side Effects],

page 191).

(cc0) This refers to the machine’s condition code register. It has no operands and may not

have a machine mode. There are two ways to use it:

• To stand for a complete set of condition code flags. This is best on most machines,

where each comparison sets the entire series of flags.

With this technique, (cc0) may be validly used in only two contexts: as the

destination of an assignment (in test and compare instructions) and in compari-

son operators comparing against zero (const_int with value zero; that is to say,

const0_rtx).

• To stand for a single flag that is the result of a single condition. This is useful on

machines that have only a single flag bit, and in which comparison instructions

must specify the condition to test.

With this technique, (cc0) may be validly used in only two contexts: as the

destination of an assignment (in test and compare instructions) where the source is

a comparison operator, and as the first operand of if_then_else (in a conditional

branch).

There is only one expression object of code cc0; it is the value of the variable cc0_rtx.

Any attempt to create an expression of code cc0 will return cc0_rtx.

Instructions can set the condition code implicitly. On many machines, nearly all in-

structions set the condition code based on the value that they compute or store. It is

not necessary to record these actions explicitly in the RTL because the machine de-

scription includes a prescription for recognizing the instructions that do so (by means

of the macro NOTICE_UPDATE_CC). See Section 14.12 [Condition Code], page 318. Only

instructions whose sole purpose is to set the condition code, and instructions that use

the condition code, need mention (cc0).

On some machines, the condition code register is given a register number and a reg is

used instead of (cc0). This is usually the preferable approach if only a small subset

of instructions modify the condition code. Other machines store condition codes in

general registers; in such cases a pseudo register should be used.

Some machines, such as the Sparc and RS/6000, have two sets of arithmetic instruc-

tions, one that sets and one that does not set the condition code. This is best handled

by normally generating the instruction that does not set the condition code, and mak-

ing a pattern that both performs the arithmetic and sets the condition code register

(which would not be (cc0) in this case). For examples, search for ‘addcc’ and ‘andcc’

in ‘sparc.md’.

(pc) This represents the machine’s program counter. It has no operands and may not have

a machine mode. (pc) may be validly used only in certain specific contexts in jump

instructions.

184 Using and Porting GNU CC

There is only one expression object of code pc; it is the value of the variable pc_rtx.

Any attempt to create an expression of code pc will return pc_rtx.

All instructions that do not jump alter the program counter implicitly by incrementing

it, but there is no need to mention this in the RTL.

(mem:m addr)

This RTX represents a reference to main memory at an address represented by the

expression addr. m specifies how large a unit of memory is accessed.

12.7 RTL Expressions for Arithmetic

Unless otherwise specified, all the operands of arithmetic expressions must be valid for mode m.

An operand is valid for mode m if it has mode m, or if it is a const_int or const_double and m

is a mode of class MODE_INT.

For commutative binary operations, constants should be placed in the second operand.

(plus:m x y)

Represents the sum of the values represented by x and y carried out in machine mode

m.

(lo_sum:m x y)

Like plus, except that it represents that sum of x and the low-order bits of y. The

number of low order bits is machine-dependent but is normally the number of bits in a

Pmode item minus the number of bits set by the high code (see Section 12.5 [Constants],

page 178).

m should be Pmode.

(minus:m x y)

Like plus but represents subtraction.

(compare:m x y)

Represents the result of subtracting y from x for purposes of comparison. The result

is computed without overflow, as if with infinite precision.

Of course, machines can’t really subtract with infinite precision. However, they can

pretend to do so when only the sign of the result will be used, which is the case when the

result is stored in the condition code. And that is the only way this kind of expression

may validly be used: as a value to be stored in the condition codes.

The mode m is not related to the modes of x and y, but instead is the mode of the

condition code value. If (cc0) is used, it is VOIDmode. Otherwise it is some mode in

class MODE_CC, often CCmode. See Section 14.12 [Condition Code], page 318.

Chapter 12: RTL Representation 185

Normally, x and y must have the same mode. Otherwise, compare is valid only if the

mode of x is in class MODE_INT and y is a const_int or const_double with mode

VOIDmode. The mode of x determines what mode the comparison is to be done in; thus

it must not be VOIDmode.

If one of the operands is a constant, it should be placed in the second operand and the

comparison code adjusted as appropriate.

A compare specifying two VOIDmode constants is not valid since there is no way to

know in what mode the comparison is to be performed; the comparison must either be

folded during the compilation or the first operand must be loaded into a register while

its mode is still known.

(neg:m x)

Represents the negation (subtraction from zero) of the value represented by x, carried

out in mode m.

(mult:m x y)

Represents the signed product of the values represented by x and y carried out in

machine mode m.

Some machines support a multiplication that generates a product wider than the

operands. Write the pattern for this as

(mult:m (sign_extend:m x) (sign_extend:m y))

where m is wider than the modes of x and y, which need not be the same.

Write patterns for unsigned widening multiplication similarly using zero_extend.

(div:m x y)

Represents the quotient in signed division of x by y, carried out in machine mode m. If

m is a floating point mode, it represents the exact quotient; otherwise, the integerized

quotient.

Some machines have division instructions in which the operands and quotient widths

are not all the same; you should represent such instructions using truncate and

sign_extend as in,

(truncate:m1 (div:m2 x (sign_extend:m2 y)))

(udiv:m x y)

Like div but represents unsigned division.

(mod:m x y)

(umod:m x y)

Like div and udiv but represent the remainder instead of the quotient.

(smin:m x y)

(smax:m x y)

Represents the smaller (for smin) or larger (for smax) of x and y, interpreted as signed

integers in mode m.

186 Using and Porting GNU CC

(umin:m x y)

(umax:m x y)

Like smin and smax, but the values are interpreted as unsigned integers.

(not:m x)

Represents the bitwise complement of the value represented by x, carried out in mode

m, which must be a fixed-point machine mode.

(and:m x y)

Represents the bitwise logical-and of the values represented by x and y, carried out in

machine mode m, which must be a fixed-point machine mode.

(ior:m x y)

Represents the bitwise inclusive-or of the values represented by x and y, carried out in

machine mode m, which must be a fixed-point mode.

(xor:m x y)

Represents the bitwise exclusive-or of the values represented by x and y, carried out in

machine mode m, which must be a fixed-point mode.

(ashift:m x c)

Represents the result of arithmetically shifting x left by c places. x have mode m,

a fixed-point machine mode. c be a fixed-point mode or be a constant with mode

VOIDmode; which mode is determined by the mode called for in the machine description

entry for the left-shift instruction. For example, on the Vax, the mode of c is QImode

regardless of m.

(lshift:m x c)

Like ashift but for logical left shift. ashift and lshift are identical operations; we

customarily use ashift for both.

(lshiftrt:m x c)

(ashiftrt:m x c)

Like lshift and ashift but for right shift. Unlike the case for left shift, these two

operations are distinct.

(rotate:m x c)

(rotatert:m x c)

Similar but represent left and right rotate. If c is a constant, use rotate.

(abs:m x)

Represents the absolute value of x, computed in mode m.

(sqrt:m x)

Represents the square root of x, computed in mode m. Most often m will be a floating

point mode.

Chapter 12: RTL Representation 187

(ffs:m x)

Represents one plus the index of the least significant 1-bit in x, represented as an integer

of mode m. (The value is zero if x is zero.) The mode of x need not be m; depending

on the target machine, various mode combinations may be valid.

12.8 Comparison Operations

Comparison operators test a relation on two operands and are considered to represent a machine-

dependent nonzero value described by, but not necessarily equal to, STORE_FLAG_VALUE (see Sec-

tion 14.19 [Misc], page 350) if the relation holds, or zero if it does not. The mode of the comparison

operation is independent of the mode of the data being compared. If the comparison operation

is being tested (e.g., the first operand of an if_then_else), the mode must be VOIDmode. If

the comparison operation is producing data to be stored in some variable, the mode must be in

class MODE_INT. All comparison operations producing data must use the same mode, which is

machine-specific.

There are two ways that comparison operations may be used. The comparison operators may be

used to compare the condition codes (cc0) against zero, as in (eq (cc0) (const_int 0)). Such

a construct actually refers to the result of the preceding instruction in which the condition codes

were set. The instructing setting the condition code must be adjacent to the instruction using the

condition code; only note insns may separate them.

Alternatively, a comparison operation may directly compare two data objects. The mode of the

comparison is determined by the operands; they must both be valid for a common machine mode.

A comparison with both operands constant would be invalid as the machine mode could not be

deduced from it, but such a comparison should never exist in RTL due to constant folding.

In the example above, if (cc0) were last set to (compare x y), the comparison operation is

identical to (eq x y). Usually only one style of comparisons is supported on a particular machine,

but the combine pass will try to merge the operations to produce the eq shown in case it exists in

the context of the particular insn involved.

Inequality comparisons come in two flavors, signed and unsigned. Thus, there are distinct

expression codes gt and gtu for signed and unsigned greater-than. These can produce different

results for the same pair of integer values: for example, 1 is signed greater-than -1 but not unsigned

greater-than, because -1 when regarded as unsigned is actually 0xffffffff which is greater than

1.

188 Using and Porting GNU CC

The signed comparisons are also used for floating point values. Floating point comparisons are

distinguished by the machine modes of the operands.

(eq:m x y)

1 if the values represented by x and y are equal, otherwise 0.

(ne:m x y)

1 if the values represented by x and y are not equal, otherwise 0.

(gt:m x y)

1 if the x is greater than y. If they are fixed-point, the comparison is done in a signed

sense.

(gtu:m x y)

Like gt but does unsigned comparison, on fixed-point numbers only.

(lt:m x y)

(ltu:m x y)

Like gt and gtu but test for “less than”.

(ge:m x y)

(geu:m x y)

Like gt and gtu but test for “greater than or equal”.

(le:m x y)

(leu:m x y)

Like gt and gtu but test for “less than or equal”.

(if_then_else cond then else)

This is not a comparison operation but is listed here because it is always used in con-

junction with a comparison operation. To be precise, cond is a comparison expression.

This expression represents a choice, according to cond, between the value represented

by then and the one represented by else.

On most machines, if_then_else expressions are valid only to express conditional

jumps.

(cond [test1 value1 test2 value2 . . .] default)

Similar to if_then_else, but more general. Each of test1, test2, . . . is performed in

turn. The result of this expression is the value corresponding to the first non-zero test,

or default if none of the tests are non-zero expressions.

This is currently not valid for instruction patterns and is supported only for insn

attributes. See Section 13.15 [Insn Attributes], page 251.

Chapter 12: RTL Representation 189

12.9 Bit Fields

Special expression codes exist to represent bit-field instructions. These types of expressions are

lvalues in RTL; they may appear on the left side of an assignment, indicating insertion of a value

into the specified bit field.

(sign_extract:m loc size pos)

This represents a reference to a sign-extended bit field contained or starting in loc (a

memory or register reference). The bit field is size bits wide and starts at bit pos. The

compilation option BITS_BIG_ENDIAN says which end of the memory unit pos counts

from.

If loc is in memory, its mode must be a single-byte integer mode. If loc is in a register,

the mode to use is specified by the operand of the insv or extv pattern (see Section 13.7

[Standard Names], page 226) and is usually a full-word integer mode.

The mode of pos is machine-specific and is also specified in the insv or extv pattern.

The mode m is the same as the mode that would be used for loc if it were a register.

(zero_extract:m loc size pos)

Like sign_extract but refers to an unsigned or zero-extended bit field. The same

sequence of bits are extracted, but they are filled to an entire word with zeros instead

of by sign-extension.

12.10 Conversions

All conversions between machine modes must be represented by explicit conversion operations.

For example, an expression which is the sum of a byte and a full word cannot be written as (plus:SI

(reg:QI 34) (reg:SI 80)) because the plus operation requires two operands of the same machine

mode. Therefore, the byte-sized operand is enclosed in a conversion operation, as in

(plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))

The conversion operation is not a mere placeholder, because there may be more than one way

of converting from a given starting mode to the desired final mode. The conversion operation code

says how to do it.

190 Using and Porting GNU CC

For all conversion operations, x must not be VOIDmode because the mode in which to do the

conversion would not be known. The conversion must either be done at compile-time or x must be

placed into a register.

(sign_extend:m x)

Represents the result of sign-extending the value x to machine mode m. m must be a

fixed-point mode and x a fixed-point value of a mode narrower than m.

(zero_extend:m x)

Represents the result of zero-extending the value x to machine mode m. m must be a

fixed-point mode and x a fixed-point value of a mode narrower than m.

(float_extend:m x)

Represents the result of extending the value x to machine mode m. m must be a

floating point mode and x a floating point value of a mode narrower than m.

(truncate:m x)

Represents the result of truncating the value x to machine mode m. m must be a

fixed-point mode and x a fixed-point value of a mode wider than m.

(float_truncate:m x)

Represents the result of truncating the value x to machine mode m. m must be a

floating point mode and x a floating point value of a mode wider than m.

(float:m x)

Represents the result of converting fixed point value x, regarded as signed, to floating

point mode m.

(unsigned_float:m x)

Represents the result of converting fixed point value x, regarded as unsigned, to floating

point mode m.

(fix:m x)

When m is a fixed point mode, represents the result of converting floating point value x

to mode m, regarded as signed. How rounding is done is not specified, so this operation

may be used validly in compiling C code only for integer-valued operands.

(unsigned_fix:m x)

Represents the result of converting floating point value x to fixed point mode m, re-

garded as unsigned. How rounding is done is not specified.

(fix:m x)

When m is a floating point mode, represents the result of converting floating point

value x (valid for mode m) to an integer, still represented in floating point mode m, by

rounding towards zero.

Chapter 12: RTL Representation 191

12.11 Declarations

Declaration expression codes do not represent arithmetic operations but rather state assertions

about their operands.

(strict_low_part (subreg:m (reg:n r) 0))

This expression code is used in only one context: as the destination operand of a set

expression. In addition, the operand of this expression must be a non-paradoxical

subreg expression.

The presence of strict_low_part says that the part of the register which is meaningful

in mode n, but is not part of mode m, is not to be altered. Normally, an assignment

to such a subreg is allowed to have undefined effects on the rest of the register when m

is less than a word.

12.12 Side Effect Expressions

The expression codes described so far represent values, not actions. But machine instructions

never produce values; they are meaningful only for their side effects on the state of the machine.

Special expression codes are used to represent side effects.

The body of an instruction is always one of these side effect codes; the codes described above,

which represent values, appear only as the operands of these.

(set lval x)

Represents the action of storing the value of x into the place represented by lval. lval

must be an expression representing a place that can be stored in: reg (or subreg or

strict_low_part), mem, pc or cc0.

If lval is a reg, subreg or mem, it has a machine mode; then x must be valid for that

mode.

If lval is a reg whose machine mode is less than the full width of the register, then it

means that the part of the register specified by the machine mode is given the specified

value and the rest of the register receives an undefined value. Likewise, if lval is a

subreg whose machine mode is narrower than the mode of the register, the rest of the

register can be changed in an undefined way.

If lval is a strict_low_part of a subreg, then the part of the register specified by the

machine mode of the subreg is given the value x and the rest of the register is not

changed.

192 Using and Porting GNU CC

If lval is (cc0), it has no machine mode, and x may be either a compare expression or

a value that may have any mode. The latter case represents a “test” instruction. The

expression (set (cc0) (reg:m n)) is equivalent to (set (cc0) (compare (reg:m n)

(const_int 0))). Use the former expression to save space during the compilation.

If lval is (pc), we have a jump instruction, and the possibilities for x are very limited.

It may be a label_ref expression (unconditional jump). It may be an if_then_else

(conditional jump), in which case either the second or the third operand must be (pc)

(for the case which does not jump) and the other of the two must be a label_ref (for

the case which does jump). x may also be a mem or (plus:SI (pc) y), where y may

be a reg or a mem; these unusual patterns are used to represent jumps through branch

tables.

If lval is neither (cc0) nor (pc), the mode of lval must not be VOIDmode and the mode

of x must be valid for the mode of lval.

lval is customarily accessed with the SET_DEST macro and x with the SET_SRC macro.

(return) As the sole expression in a pattern, represents a return from the current function, on

machines where this can be done with one instruction, such as Vaxes. On machines

where a multi-instruction “epilogue” must be executed in order to return from the

function, returning is done by jumping to a label which precedes the epilogue, and the

return expression code is never used.

Inside an if_then_else expression, represents the value to be placed in pc to return

to the caller.

Note that an insn pattern of (return) is logically equivalent to (set (pc) (return)),

but the latter form is never used.

(call function nargs)

Represents a function call. function is a mem expression whose address is the address of

the function to be called. nargs is an expression which can be used for two purposes:

on some machines it represents the number of bytes of stack argument; on others, it

represents the number of argument registers.

Each machine has a standard machine mode which function must have. The machine

description defines macro FUNCTION_MODE to expand into the requisite mode name.

The purpose of this mode is to specify what kind of addressing is allowed, on machines

where the allowed kinds of addressing depend on the machine mode being addressed.

(clobber x)

Represents the storing or possible storing of an unpredictable, undescribed value into

x, which must be a reg, scratch or mem expression.

One place this is used is in string instructions that store standard values into particular

hard registers. It may not be worth the trouble to describe the values that are stored,

but it is essential to inform the compiler that the registers will be altered, lest it attempt

to keep data in them across the string instruction.

Chapter 12: RTL Representation 193

If x is (mem:BLK (const_int 0)), it means that all memory locations must be pre-

sumed clobbered.

Note that the machine description classifies certain hard registers as “call-clobbered”.

All function call instructions are assumed by default to clobber these registers, so there

is no need to use clobber expressions to indicate this fact. Also, each function call

is assumed to have the potential to alter any memory location, unless the function is

declared const.

If the last group of expressions in a parallel are each a clobber expression whose

arguments are reg or match_scratch (see Section 13.3 [RTL Template], page 211)

expressions, the combiner phase can add the appropriate clobber expressions to an

insn it has constructed when doing so will cause a pattern to be matched.

This feature can be used, for example, on a machine that whose multiply and add

instructions don’t use an MQ register but which has an add-accumulate instruction

that does clobber the MQ register. Similarly, a combined instruction might require a

temporary register while the constituent instructions might not.

When a clobber expression for a register appears inside a parallel with other side

effects, the register allocator guarantees that the register is unoccupied both before and

after that insn. However, the reload phase may allocate a register used for one of the

inputs unless the ‘&’ constraint is specified for the selected alternative (see Section 13.6.4

[Modifiers], page 225). You can clobber either a specific hard register, a pseudo register,

or a scratch expression; in the latter two cases, GNU CC will allocate a hard register

that is available there for use as a temporary.

For instructions that require a temporary register, you should use scratch instead of

a pseudo-register because this will allow the combiner phase to add the clobber when

required. You do this by coding (clobber (match_scratch . . .)). If you do clobber a

pseudo register, use one which appears nowhere else—generate a new one each time.

Otherwise, you may confuse CSE.

There is one other known use for clobbering a pseudo register in a parallel: when one

of the input operands of the insn is also clobbered by the insn. In this case, using the

same pseudo register in the clobber and elsewhere in the insn produces the expected

results.

(use x) Represents the use of the value of x. It indicates that the value in x at this point in the

program is needed, even though it may not be apparent why this is so. Therefore, the

compiler will not attempt to delete previous instructions whose only effect is to store

a value in x. x must be a reg expression.

During the delayed branch scheduling phase, x may be an insn. This indicates that

x previously was located at this place in the code and its data dependencies need

to be taken into account. These use insns will be deleted before the delayed branch

scheduling phase exits.

194 Using and Porting GNU CC

(parallel [x0 x1 . . .])

Represents several side effects performed in parallel. The square brackets stand for

a vector; the operand of parallel is a vector of expressions. x0, x1 and so on are

individual side effect expressions—expressions of code set, call, return, clobber or

use.

“In parallel” means that first all the values used in the individual side-effects are com-

puted, and second all the actual side-effects are performed. For example,

(parallel [(set (reg:SI 1) (mem:SI (reg:SI 1)))
(set (mem:SI (reg:SI 1)) (reg:SI 1))])

says unambiguously that the values of hard register 1 and the memory location ad-

dressed by it are interchanged. In both places where (reg:SI 1) appears as a memory

address it refers to the value in register 1 before the execution of the insn.

It follows that it is incorrect to use parallel and expect the result of one set to

be available for the next one. For example, people sometimes attempt to represent a

jump-if-zero instruction this way:

(parallel [(set (cc0) (reg:SI 34))
(set (pc) (if_then_else

(eq (cc0) (const_int 0))
(label_ref . . .)
(pc)))])

But this is incorrect, because it says that the jump condition depends on the condition

code value before this instruction, not on the new value that is set by this instruction.

Peephole optimization, which takes place together with final assembly code output, can

produce insns whose patterns consist of a parallel whose elements are the operands

needed to output the resulting assembler code—often reg, mem or constant expressions.

This would not be well-formed RTL at any other stage in compilation, but it is ok then

because no further optimization remains to be done. However, the definition of the

macro NOTICE_UPDATE_CC, if any, must deal with such insns if you define any peephole

optimizations.

(sequence [insns . . .])

Represents a sequence of insns. Each of the insns that appears in the vector is suitable

for appearing in the chain of insns, so it must be an insn, jump_insn, call_insn,

code_label, barrier or note.

A sequence RTX is never placed in an actual insn during RTL generation. It represents

the sequence of insns that result from a define_expand before those insns are passed to

emit_insn to insert them in the chain of insns. When actually inserted, the individual

sub-insns are separated out and the sequence is forgotten.

After delay-slot scheduling is completed, an insn and all the insns that reside in its

delay slots are grouped together into a sequence. The insn requiring the delay slot is

the first insn in the vector; subsequent insns are to be placed in the delay slot.

Chapter 12: RTL Representation 195

INSN_ANNULLED_BRANCH_P is set on an insn in a delay slot to indicate that a branch

insn should be used that will conditionally annul the effect of the insns in the delay

slots. In such a case, INSN_FROM_TARGET_P indicates that the insn is from the target

of the branch and should be executed only if the branch is taken; otherwise the insn

should be executed only if the branch is not taken. See Section 13.15.7 [Delay Slots],

page 260.

These expression codes appear in place of a side effect, as the body of an insn, though strictly

speaking they do not always describe side effects as such:

(asm_input s)

Represents literal assembler code as described by the string s.

(unspec [operands . . .] index)

(unspec_volatile [operands . . .] index)

Represents a machine-specific operation on operands. index selects between multi-

ple machine-specific operations. unspec_volatile is used for volatile operations and

operations that may trap; unspec is used for other operations.

These codes may appear inside a pattern of an insn, inside a parallel, or inside an

expression.

(addr_vec:m [lr0 lr1 . . .])

Represents a table of jump addresses. The vector elements lr0, etc., are label_ref

expressions. The mode m specifies how much space is given to each address; normally

m would be Pmode.

(addr_diff_vec:m base [lr0 lr1 . . .])

Represents a table of jump addresses expressed as offsets from base. The vector ele-

ments lr0, etc., are label_ref expressions and so is base. The mode m specifies how

much space is given to each address-difference.

12.13 Embedded Side-Effects on Addresses

Four special side-effect expression codes appear as memory addresses.

(pre_dec:m x)

Represents the side effect of decrementing x by a standard amount and represents also

the value that x has after being decremented. x must be a reg or mem, but most

196 Using and Porting GNU CC

machines allow only a reg. m must be the machine mode for pointers on the machine

in use. The amount x is decremented by is the length in bytes of the machine mode of

the containing memory reference of which this expression serves as the address. Here

is an example of its use:

(mem:DF (pre_dec:SI (reg:SI 39)))

This says to decrement pseudo register 39 by the length of a DFmode value and use the

result to address a DFmode value.

(pre_inc:m x)

Similar, but specifies incrementing x instead of decrementing it.

(post_dec:m x)

Represents the same side effect as pre_dec but a different value. The value represented

here is the value x has before being decremented.

(post_inc:m x)

Similar, but specifies incrementing x instead of decrementing it.

These embedded side effect expressions must be used with care. Instruction patterns may not

use them. Until the ‘flow’ pass of the compiler, they may occur only to represent pushes onto

the stack. The ‘flow’ pass finds cases where registers are incremented or decremented in one

instruction and used as an address shortly before or after; these cases are then transformed to use

pre- or post-increment or -decrement.

If a register used as the operand of these expressions is used in another address in an insn, the

original value of the register is used. Uses of the register outside of an address are not permitted

within the same insn as a use in an embedded side effect expression because such insns behave

differently on different machines and hence must be treated as ambiguous and disallowed.

An instruction that can be represented with an embedded side effect could also be represented

using parallel containing an additional set to describe how the address register is altered. This

is not done because machines that allow these operations at all typically allow them wherever a

memory address is called for. Describing them as additional parallel stores would require doubling

the number of entries in the machine description.

Chapter 12: RTL Representation 197

12.14 Assembler Instructions as Expressions

The RTX code asm_operands represents a value produced by a user-specified assembler instruc-

tion. It is used to represent an asm statement with arguments. An asm statement with a single

output operand, like this:

asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z));

is represented using a single asm_operands RTX which represents the value that is stored in

outputvar:

(set rtx-for-outputvar
(asm_operands "foo %1,%2,%0" "a" 0

[rtx-for-addition-result rtx-for-*z]
[(asm_input:m1 "g")
(asm_input:m2 "di")]))

Here the operands of the asm_operands RTX are the assembler template string, the output-

operand’s constraint, the index-number of the output operand among the output operands specified,

a vector of input operand RTX’s, and a vector of input-operand modes and constraints. The mode

m1 is the mode of the sum x+y; m2 is that of *z.

When an asm statement has multiple output values, its insn has several such set RTX’s inside

of a parallel. Each set contains a asm_operands; all of these share the same assembler template

and vectors, but each contains the constraint for the respective output operand. They are also

distinguished by the output-operand index number, which is 0, 1, . . . for successive output operands.

12.15 Insns

The RTL representation of the code for a function is a doubly-linked chain of objects called

insns. Insns are expressions with special codes that are used for no other purpose. Some insns are

actual instructions; others represent dispatch tables for switch statements; others represent labels

to jump to or various sorts of declarative information.

In addition to its own specific data, each insn must have a unique id-number that distinguishes

it from all other insns in the current function (after delayed branch scheduling, copies of an insn

198 Using and Porting GNU CC

with the same id-number may be present in multiple places in a function, but these copies will

always be identical and will only appear inside a sequence), and chain pointers to the preceding

and following insns. These three fields occupy the same position in every insn, independent of the

expression code of the insn. They could be accessed with XEXP and XINT, but instead three special

macros are always used:

INSN_UID (i)

Accesses the unique id of insn i.

PREV_INSN (i)

Accesses the chain pointer to the insn preceding i. If i is the first insn, this is a null

pointer.

NEXT_INSN (i)

Accesses the chain pointer to the insn following i. If i is the last insn, this is a null

pointer.

The first insn in the chain is obtained by calling get_insns; the last insn is the result of calling

get_last_insn. Within the chain delimited by these insns, the NEXT_INSN and PREV_INSN pointers

must always correspond: if insn is not the first insn,

NEXT_INSN (PREV_INSN (insn)) == insn

is always true and if insn is not the last insn,

PREV_INSN (NEXT_INSN (insn)) == insn

is always true.

After delay slot scheduling, some of the insns in the chain might be sequence expressions, which

contain a vector of insns. The value of NEXT_INSN in all but the last of these insns is the next insn

in the vector; the value of NEXT_INSN of the last insn in the vector is the same as the value of

NEXT_INSN for the sequence in which it is contained. Similar rules apply for PREV_INSN.

This means that the above invariants are not necessarily true for insns inside sequence expres-

sions. Specifically, if insn is the first insn in a sequence, NEXT_INSN (PREV_INSN (insn)) is the

Chapter 12: RTL Representation 199

insn containing the sequence expression, as is the value of PREV_INSN (NEXT_INSN (insn)) is insn

is the last insn in the sequence expression. You can use these expressions to find the containing

sequence expression.

Every insn has one of the following six expression codes:

insn The expression code insn is used for instructions that do not jump and do not do

function calls. sequence expressions are always contained in insns with code insn

even if one of those insns should jump or do function calls.

Insns with code insn have four additional fields beyond the three mandatory ones listed

above. These four are described in a table below.

jump_insn

The expression code jump_insn is used for instructions that may jump (or, more gen-

erally, may contain label_ref expressions). If there is an instruction to return from

the current function, it is recorded as a jump_insn.

jump_insn insns have the same extra fields as insn insns, accessed in the same way

and in addition contains a field JUMP_LABEL which is defined once jump optimization

has completed.

For simple conditional and unconditional jumps, this field contains the code_label

to which this insn will (possibly conditionally) branch. In a more complex jump,

JUMP_LABEL records one of the labels that the insn refers to; the only way to find the

others is to scan the entire body of the insn.

Return insns count as jumps, but since they do not refer to any labels, they have zero

in the JUMP_LABEL field.

call_insn

The expression code call_insn is used for instructions that may do function calls. It

is important to distinguish these instructions because they imply that certain registers

and memory locations may be altered unpredictably.

A call_insn insn may be preceded by insns that contain a single use expression and

be followed by insns the contain a single clobber expression. If so, these use and

clobber expressions are treated as being part of the function call. There must not

even be a note between the call_insn and the use or clobber insns for this special

treatment to take place. This is somewhat of a kludge and will be removed in a later

version of GNU CC.

call_insn insns have the same extra fields as insn insns, accessed in the same way.

code_label

A code_label insn represents a label that a jump insn can jump to. It contains two

special fields of data in addition to the three standard ones. CODE_LABEL_NUMBER is

200 Using and Porting GNU CC

used to hold the label number, a number that identifies this label uniquely among all

the labels in the compilation (not just in the current function). Ultimately, the label

is represented in the assembler output as an assembler label, usually of the form ‘Ln’

where n is the label number.

When a code_label appears in an RTL expression, it normally appears within a

label_ref which represents the address of the label, as a number.

The field LABEL_NUSES is only defined once the jump optimization phase is completed

and contains the number of times this label is referenced in the current function.

barrier Barriers are placed in the instruction stream when control cannot flow past them.

They are placed after unconditional jump instructions to indicate that the jumps are

unconditional and after calls to volatile functions, which do not return (e.g., exit).

They contain no information beyond the three standard fields.

note note insns are used to represent additional debugging and declarative information.

They contain two nonstandard fields, an integer which is accessed with the macro

NOTE_LINE_NUMBER and a string accessed with NOTE_SOURCE_FILE.

If NOTE_LINE_NUMBER is positive, the note represents the position of a source line and

NOTE_SOURCE_FILE is the source file name that the line came from. These notes control

generation of line number data in the assembler output.

Otherwise, NOTE_LINE_NUMBER is not really a line number but a code with one of the

following values (and NOTE_SOURCE_FILE must contain a null pointer):

NOTE_INSN_DELETED

Such a note is completely ignorable. Some passes of the compiler delete

insns by altering them into notes of this kind.

NOTE_INSN_BLOCK_BEG

NOTE_INSN_BLOCK_END

These types of notes indicate the position of the beginning and end of a

level of scoping of variable names. They control the output of debugging

information.

NOTE_INSN_LOOP_BEG

NOTE_INSN_LOOP_END

These types of notes indicate the position of the beginning and end of a

while or for loop. They enable the loop optimizer to find loops quickly.

NOTE_INSN_LOOP_CONT

Appears at the place in a loop that continue statements jump to.

NOTE_INSN_LOOP_VTOP

This note indicates the place in a loop where the exit test begins for those

loops in which the exit test has been duplicated. This position becomes

another virtual start of the loop when considering loop invariants.

Chapter 12: RTL Representation 201

NOTE_INSN_FUNCTION_END

Appears near the end of the function body, just before the label that return

statements jump to (on machine where a single instruction does not suffice

for returning). This note may be deleted by jump optimization.

NOTE_INSN_SETJMP

Appears following each call to setjmp or a related function.

These codes are printed symbolically when they appear in debugging dumps.

The machine mode of an insn is normally VOIDmode, but some phases use the mode for various

purposes; for example, the reload pass sets it to HImode if the insn needs reloading but not register

elimination and QImode if both are required. The common subexpression elimination pass sets the

mode of an insn to QImode when it is the first insn in a block that has already been processed.

Here is a table of the extra fields of insn, jump_insn and call_insn insns:

PATTERN (i)

An expression for the side effect performed by this insn. This must be one of the

following codes: set, call, use, clobber, return, asm_input, asm_output, addr_vec,

addr_diff_vec, trap_if, unspec, unspec_volatile, parallel, or sequence. If it

is a parallel, each element of the parallel must be one these codes, except that

parallel expressions cannot be nested and addr_vec and addr_diff_vec are not

permitted inside a parallel expression.

INSN_CODE (i)

An integer that says which pattern in the machine description matches this insn, or -1

if the matching has not yet been attempted.

Such matching is never attempted and this field remains -1 on an insn whose pattern

consists of a single use, clobber, asm_input, addr_vec or addr_diff_vec expression.

Matching is also never attempted on insns that result from an asm statement. These

contain at least one asm_operands expression. The function asm_noperands returns a

non-negative value for such insns.

In the debugging output, this field is printed as a number followed by a symbolic

representation that locates the pattern in the ‘md’ file as some small positive or negative

offset from a named pattern.

LOG_LINKS (i)

A list (chain of insn_list expressions) giving information about dependencies between

instructions within a basic block. Neither a jump nor a label may come between the

related insns.

202 Using and Porting GNU CC

REG_NOTES (i)

A list (chain of expr_list and insn_list expressions) giving miscellaneous informa-

tion about the insn. It is often information pertaining to the registers used in this

insn.

The LOG_LINKS field of an insn is a chain of insn_list expressions. Each of these has two

operands: the first is an insn, and the second is another insn_list expression (the next one in the

chain). The last insn_list in the chain has a null pointer as second operand. The significant thing

about the chain is which insns appear in it (as first operands of insn_list expressions). Their

order is not significant.

This list is originally set up by the flow analysis pass; it is a null pointer until then. Flow

only adds links for those data dependencies which can be used for instruction combination. For

each insn, the flow analysis pass adds a link to insns which store into registers values that are

used for the first time in this insn. The instruction scheduling pass adds extra links so that every

dependence will be represented. Links represent data dependencies, antidependencies and output

dependencies; the machine mode of the link distinguishes these three types: antidependencies have

mode REG_DEP_ANTI, output dependencies have mode REG_DEP_OUTPUT, and data dependencies

have mode VOIDmode.

The REG_NOTES field of an insn is a chain similar to the LOG_LINKS field but it includes expr_list

expressions in addition to insn_list expressions. There are several kinds of register notes, which

are distinguished by the machine mode, which in a register note is really understood as being an

enum reg_note. The first operand op of the note is data whose meaning depends on the kind of

note.

The macro REG_NOTE_KIND (x) returns the kind of register note. Its counterpart, the macro

PUT_REG_NOTE_KIND (x, newkind) sets the register note type of x to be newkind.

Register notes are of three classes: They may say something about an input to an insn, they

may say something about an output of an insn, or they may create a linkage between two insns.

There are also a set of values that are only used in LOG_LINKS.

These register notes annotate inputs to an insn:

REG_DEAD The value in op dies in this insn; that is to say, altering the value immediately after

this insn would not affect the future behavior of the program.

Chapter 12: RTL Representation 203

This does not necessarily mean that the register op has no useful value after this insn

since it may also be an output of the insn. In such a case, however, a REG_DEAD note

would be redundant and is usually not present until after the reload pass, but no code

relies on this fact.

REG_INC The register op is incremented (or decremented; at this level there is no distinction)

by an embedded side effect inside this insn. This means it appears in a post_inc,

pre_inc, post_dec or pre_dec expression.

REG_NONNEG

The register op is known to have a nonnegative value when this insn is reached. This

is used so that decrement and branch until zero instructions, such as the m68k dbra,

can be matched.

The REG_NONNEG note is added to insns only if the machine description contains a

pattern named ‘decrement_and_branch_until_zero’.

REG_NO_CONFLICT

This insn does not cause a conflict between op and the item being set by this insn

even though it might appear that it does. In other words, if the destination register

and op could otherwise be assigned the same register, this insn does not prevent that

assignment.

Insns with this note are usually part of a block that begins with a clobber insn speci-

fying a multi-word pseudo register (which will be the output of the block), a group of

insns that each set one word of the value and have the REG_NO_CONFLICT note attached,

and a final insn that copies the output to itself with an attached REG_EQUAL note giv-

ing the expression being computed. This block is encapsulated with REG_LIBCALL and

REG_RETVAL notes on the first and last insns, respectively.

REG_LABEL

This insn uses op, a code_label, but is not a jump_insn. The presence of this note

allows jump optimization to be aware that op is, in fact, being used.

The following notes describe attributes of outputs of an insn:

REG_EQUIV

REG_EQUAL

This note is only valid on an insn that sets only one register and indicates that that

register will be equal to op at run time; the scope of this equivalence differs between

the two types of notes. The value which the insn explicitly copies into the register may

look different from op, but they will be equal at run time. If the output of the single

204 Using and Porting GNU CC

set is a strict_low_part expression, the note refers to the register that is contained

in SUBREG_REG of the subreg expression.

For REG_EQUIV, the register is equivalent to op throughout the entire function, and

could validly be replaced in all its occurrences by op. (“Validly” here refers to the data

flow of the program; simple replacement may make some insns invalid.) For example,

when a constant is loaded into a register that is never assigned any other value, this

kind of note is used.

When a parameter is copied into a pseudo-register at entry to a function, a note of this

kind records that the register is equivalent to the stack slot where the parameter was

passed. Although in this case the register may be set by other insns, it is still valid to

replace the register by the stack slot throughout the function.

In the case of REG_EQUAL, the register that is set by this insn will be equal to op at

run time at the end of this insn but not necessarily elsewhere in the function. In this

case, op is typically an arithmetic expression. For example, when a sequence of insns

such as a library call is used to perform an arithmetic operation, this kind of note is

attached to the insn that produces or copies the final value.

These two notes are used in different ways by the compiler passes. REG_EQUAL is used

by passes prior to register allocation (such as common subexpression elimination and

loop optimization) to tell them how to think of that value. REG_EQUIV notes are used

by register allocation to indicate that there is an available substitute expression (either

a constant or a mem expression for the location of a parameter on the stack) that may

be used in place of a register if insufficient registers are available.

Except for stack homes for parameters, which are indicated by a REG_EQUIV note and

are not useful to the early optimization passes and pseudo registers that are equivalent

to a memory location throughout there entire life, which is not detected until later in

the compilation, all equivalences are initially indicated by an attached REG_EQUAL note.

In the early stages of register allocation, a REG_EQUAL note is changed into a REG_EQUIV

note if op is a constant and the insn represents the only set of its destination register.

Thus, compiler passes prior to register allocation need only check for REG_EQUAL notes

and passes subsequent to register allocation need only check for REG_EQUIV notes.

REG_UNUSED

The register op being set by this insn will not be used in a subsequent insn. This

differs from a REG_DEAD note, which indicates that the value in an input will not be

used subsequently. These two notes are independent; both may be present for the same

register.

REG_WAS_0

The single output of this insn contained zero before this insn. op is the insn that set it

to zero. You can rely on this note if it is present and op has not been deleted or turned

into a note; its absence implies nothing.

Chapter 12: RTL Representation 205

These notes describe linkages between insns. They occur in pairs: one insn has one of a pair of

notes that points to a second insn, which has the inverse note pointing back to the first insn.

REG_RETVAL

This insn copies the value of a multi-insn sequence (for example, a library call), and

op is the first insn of the sequence (for a library call, the first insn that was generated

to set up the arguments for the library call).

Loop optimization uses this note to treat such a sequence as a single operation for code

motion purposes and flow analysis uses this note to delete such sequences whose results

are dead.

A REG_EQUAL note will also usually be attached to this insn to provide the expression

being computed by the sequence.

REG_LIBCALL

This is the inverse of REG_RETVAL: it is placed on the first insn of a multi-insn sequence,

and it points to the last one.

REG_CC_SETTER

REG_CC_USER

On machines that use cc0, the insns which set and use cc0 set and use cc0 are adjacent.

However, when branch delay slot filling is done, this may no longer be true. In this

case a REG_CC_USER note will be placed on the insn setting cc0 to point to the insn

using cc0 and a REG_CC_SETTER note will be placed on the insn using cc0 to point to

the insn setting cc0.

These values are only used in the LOG_LINKS field, and indicate the type of dependency that

each link represents. Links which indicate a data dependence (a read after write dependence) do

not use any code, they simply have mode VOIDmode, and are printed without any descriptive text.

REG_DEP_ANTI

This indicates an anti dependence (a write after read dependence).

REG_DEP_OUTPUT

This indicates an output dependence (a write after write dependence).

For convenience, the machine mode in an insn_list or expr_list is printed using these sym-

bolic codes in debugging dumps.

206 Using and Porting GNU CC

The only difference between the expression codes insn_list and expr_list is that the first

operand of an insn_list is assumed to be an insn and is printed in debugging dumps as the insn’s

unique id; the first operand of an expr_list is printed in the ordinary way as an expression.

12.16 RTL Representation of Function-Call Insns

Insns that call subroutines have the RTL expression code call_insn. These insns must satisfy

special rules, and their bodies must use a special RTL expression code, call.

A call expression has two operands, as follows:

(call (mem:fm addr) nbytes)

Here nbytes is an operand that represents the number of bytes of argument data being passed to

the subroutine, fm is a machine mode (which must equal as the definition of the FUNCTION_MODE

macro in the machine description) and addr represents the address of the subroutine.

For a subroutine that returns no value, the call expression as shown above is the entire body

of the insn, except that the insn might also contain use or clobber expressions.

For a subroutine that returns a value whose mode is not BLKmode, the value is returned in a

hard register. If this register’s number is r, then the body of the call insn looks like this:

(set (reg:m r)
(call (mem:fm addr) nbytes))

This RTL expression makes it clear (to the optimizer passes) that the appropriate register receives

a useful value in this insn.

When a subroutine returns a BLKmode value, it is handled by passing to the subroutine the

address of a place to store the value. So the call insn itself does not “return” any value, and it has

the same RTL form as a call that returns nothing.

On some machines, the call instruction itself clobbers some register, for example to contain

the return address. call_insn insns on these machines should have a body which is a parallel

Chapter 12: RTL Representation 207

that contains both the call expression and clobber expressions that indicate which registers are

destroyed. Similarly, if the call instruction requires some register other than the stack pointer that

is not explicitly mentioned it its RTL, a use subexpression should mention that register.

Functions that are called are assumed to modify all registers listed in the configuration macro

CALL_USED_REGISTERS (see Section 14.5.1 [Register Basics], page 279) and, with the exception of

const functions and library calls, to modify all of memory.

Insns containing just use expressions directly precede the call_insn insn to indicate which regis-

ters contain inputs to the function. Similarly, if registers other than those in CALL_USED_REGISTERS

are clobbered by the called function, insns containing a single clobber follow immediately after

the call to indicate which registers.

12.17 Structure Sharing Assumptions

The compiler assumes that certain kinds of RTL expressions are unique; there do not exist two

distinct objects representing the same value. In other cases, it makes an opposite assumption:

that no RTL expression object of a certain kind appears in more than one place in the containing

structure.

These assumptions refer to a single function; except for the RTL objects that describe global

variables and external functions, and a few standard objects such as small integer constants, no

RTL objects are common to two functions.

• Each pseudo-register has only a single reg object to represent it, and therefore only a single

machine mode.

• For any symbolic label, there is only one symbol_ref object referring to it.

• There is only one const_int expression with value 0, only one with value 1, and only one with

value −1. Some other integer values are also stored uniquely.

• There is only one pc expression.

• There is only one cc0 expression.

• There is only one const_double expression with value 0 for each floating point mode. Likewise

for values 1 and 2.

• No label_ref or scratch appears in more than one place in the RTL structure; in other

words, it is safe to do a tree-walk of all the insns in the function and assume that each time a

label_ref or scratch is seen it is distinct from all others that are seen.

208 Using and Porting GNU CC

• Only one mem object is normally created for each static variable or stack slot, so these objects

are frequently shared in all the places they appear. However, separate but equal objects for

these variables are occasionally made.

• When a single asm statement has multiple output operands, a distinct asm_operands expression

is made for each output operand. However, these all share the vector which contains the

sequence of input operands. This sharing is used later on to test whether two asm_operands

expressions come from the same statement, so all optimizations must carefully preserve the

sharing if they copy the vector at all.

• No RTL object appears in more than one place in the RTL structure except as described above.

Many passes of the compiler rely on this by assuming that they can modify RTL objects in

place without unwanted side-effects on other insns.

• During initial RTL generation, shared structure is freely introduced. After all the RTL

for a function has been generated, all shared structure is copied by unshare_all_rtl in

‘emit-rtl.c’, after which the above rules are guaranteed to be followed.

• During the combiner pass, shared structure within an insn can exist temporarily. However,

the shared structure is copied before the combiner is finished with the insn. This is done by

calling copy_rtx_if_shared, which is a subroutine of unshare_all_rtl.

Chapter 13: Machine Descriptions 209

13 Machine Descriptions

A machine description has two parts: a file of instruction patterns (‘.md’ file) and a C header

file of macro definitions.

The ‘.md’ file for a target machine contains a pattern for each instruction that the target machine

supports (or at least each instruction that is worth telling the compiler about). It may also contain

comments. A semicolon causes the rest of the line to be a comment, unless the semicolon is inside

a quoted string.

See the next chapter for information on the C header file.

13.1 Everything about Instruction Patterns

Each instruction pattern contains an incomplete RTL expression, with pieces to be filled in later,

operand constraints that restrict how the pieces can be filled in, and an output pattern or C code

to generate the assembler output, all wrapped up in a define_insn expression.

A define_insn is an RTL expression containing four or five operands:

1. An optional name. The presence of a name indicate that this instruction pattern can perform

a certain standard job for the RTL-generation pass of the compiler. This pass knows certain

names and will use the instruction patterns with those names, if the names are defined in the

machine description.

The absence of a name is indicated by writing an empty string where the name should go.

Nameless instruction patterns are never used for generating RTL code, but they may permit

several simpler insns to be combined later on.

Names that are not thus known and used in RTL-generation have no effect; they are equivalent

to no name at all.

2. The RTL template (see Section 13.3 [RTL Template], page 211) is a vector of incomplete RTL

expressions which show what the instruction should look like. It is incomplete because it may

contain match_operand, match_operator, and match_dup expressions that stand for operands

of the instruction.

If the vector has only one element, that element is the template for the instruction pattern.

If the vector has multiple elements, then the instruction pattern is a parallel expression

containing the elements described.

210 Using and Porting GNU CC

3. A condition. This is a string which contains a C expression that is the final test to decide

whether an insn body matches this pattern.

For a named pattern, the condition (if present) may not depend on the data in the insn being

matched, but only the target-machine-type flags. The compiler needs to test these conditions

during initialization in order to learn exactly which named instructions are available in a

particular run.

For nameless patterns, the condition is applied only when matching an individual insn, and

only after the insn has matched the pattern’s recognition template. The insn’s operands may

be found in the vector operands.

4. The output template: a string that says how to output matching insns as assembler code. ‘%’

in this string specifies where to substitute the value of an operand. See Section 13.4 [Output

Template], page 215.

When simple substitution isn’t general enough, you can specify a piece of C code to compute

the output. See Section 13.5 [Output Statement], page 216.

5. Optionally, a vector containing the values of attributes for insns matching this pattern. See

Section 13.15 [Insn Attributes], page 251.

13.2 Example of define_insn

Here is an actual example of an instruction pattern, for the 68000/68020.

(define_insn "tstsi"
[(set (cc0)

(match_operand:SI 0 "general_operand" "rm"))]
""
"*

{ if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
return \"tstl %0\";

return \"cmpl #0,%0\"; }")

This is an instruction that sets the condition codes based on the value of a general operand. It

has no condition, so any insn whose RTL description has the form shown may be handled according

to this pattern. The name ‘tstsi’ means “test a SImode value” and tells the RTL generation pass

that, when it is necessary to test such a value, an insn to do so can be constructed using this

pattern.

The output control string is a piece of C code which chooses which output template to return

based on the kind of operand and the specific type of CPU for which code is being generated.

Chapter 13: Machine Descriptions 211

‘"rm"’ is an operand constraint. Its meaning is explained below.

13.3 RTL Template for Generating and Recognizing Insns

The RTL template is used to define which insns match the particular pattern and how to find

their operands. For named patterns, the RTL template also says how to construct an insn from

specified operands.

Construction involves substituting specified operands into a copy of the template. Matching

involves determining the values that serve as the operands in the insn being matched. Both of

these activities are controlled by special expression types that direct matching and substitution of

the operands.

(match_operand:m n predicate constraint)

This expression is a placeholder for operand number n of the insn. When constructing

an insn, operand number n will be substituted at this point. When matching an insn,

whatever appears at this position in the insn will be taken as operand number n; but

it must satisfy predicate or this instruction pattern will not match at all.

Operand numbers must be chosen consecutively counting from zero in each instruc-

tion pattern. There may be only one match_operand expression in the pattern for

each operand number. Usually operands are numbered in the order of appearance in

match_operand expressions.

predicate is a string that is the name of a C function that accepts two arguments,

an expression and a machine mode. During matching, the function will be called

with the putative operand as the expression and m as the mode argument (if m is not

specified, VOIDmode will be used, which normally causes predicate to accept any mode).

If it returns zero, this instruction pattern fails to match. predicate may be an empty

string; then it means no test is to be done on the operand, so anything which occurs

in this position is valid.

Most of the time, predicate will reject modes other than m—but not always. For

example, the predicate address_operand uses m as the mode of memory ref that the

address should be valid for. Many predicates accept const_int nodes even though

their mode is VOIDmode.

constraint controls reloading and the choice of the best register class to use for a value,

as explained later (see Section 13.6 [Constraints], page 218).

People are often unclear on the difference between the constraint and the predicate.

The predicate helps decide whether a given insn matches the pattern. The constraint

212 Using and Porting GNU CC

plays no role in this decision; instead, it controls various decisions in the case of an

insn which does match.

On CISC machines, predicate is most often "general_operand". This function checks

that the putative operand is either a constant, a register or a memory reference, and

that it is valid for mode m.

For an operand that must be a register, predicate should be "register_operand".

It would be valid to use "general_operand", since the reload pass would copy any

non-register operands through registers, but this would make GNU CC do extra work,

it would prevent invariant operands (such as constant) from being removed from loops,

and it would prevent the register allocator from doing the best possible job. On RISC

machines, it is usually most efficient to allow predicate to accept only objects that the

constraints allow.

For an operand that must be a constant, either use "immediate_operand" for predicate,

or make the instruction pattern’s extra condition require a constant, or both. You

cannot expect the constraints to do this work! If the constraints allow only constants,

but the predicate allows something else, the compiler will crash when that case arises.

(match_scratch:m n constraint)

This expression is also a placeholder for operand number n and indicates that operand

must be a scratch or reg expression.

When matching patterns, this is completely equivalent to

(match_operand:m n "scratch_operand" pred)

but, when generating RTL, it produces a (scratch:m) expression.

If the last few expressions in a parallel are clobber expressions whose operands are

either a hard register or match_scratch, the combiner can add them when necessary.

See Section 12.12 [Side Effects], page 191.

(match_dup n)

This expression is also a placeholder for operand number n. It is used when the operand

needs to appear more than once in the insn.

In construction, match_dup behaves exactly like match_operand: the operand is substi-

tuted into the insn being constructed. But in matching, match_dup behaves differently.

It assumes that operand number n has already been determined by a match_operand

appearing earlier in the recognition template, and it matches only an identical-looking

expression.

(match_operator:m n predicate [operands. . .])

This pattern is a kind of placeholder for a variable RTL expression code.

When constructing an insn, it stands for an RTL expression whose expression code is

taken from that of operand n, and whose operands are constructed from the patterns

operands.

Chapter 13: Machine Descriptions 213

When matching an expression, it matches an expression if the function predicate re-

turns nonzero on that expression and the patterns operands match the operands of the

expression.

Suppose that the function commutative_operator is defined as follows, to match any

expression whose operator is one of the commutative arithmetic operators of RTL and

whose mode is mode:

int
commutative_operator (x, mode)

rtx x;
enum machine_mode mode;

{
enum rtx_code code = GET_CODE (x);
if (GET_MODE (x) != mode)

return 0;
return GET_RTX_CLASS (code) == ’c’ || code == EQ || code == NE;

}

Then the following pattern will match any RTL expression consisting of a commutative

operator applied to two general operands:

(match_operator:SI 3 "commutative_operator"
[(match_operand:SI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g")])

Here the vector [operands. . .] contains two patterns because the expressions to be

matched all contain two operands.

When this pattern does match, the two operands of the commutative operator are

recorded as operands 1 and 2 of the insn. (This is done by the two instances of

match_operand.) Operand 3 of the insn will be the entire commutative expression:

use GET_CODE (operands[3]) to see which commutative operator was used.

The machine mode m of match_operator works like that of match_operand: it is

passed as the second argument to the predicate function, and that function is solely

responsible for deciding whether the expression to be matched “has” that mode.

When constructing an insn, argument 3 of the gen-function will specify the operation

(i.e. the expression code) for the expression to be made. It should be an RTL ex-

pression, whose expression code is copied into a new expression whose operands are

arguments 1 and 2 of the gen-function. The subexpressions of argument 3 are not used;

only its expression code matters.

When match_operator is used in a pattern for matching an insn, it usually best if the

operand number of the match_operator is higher than that of the actual operands of

the insn. This improves register allocation because the register allocator often looks at

operands 1 and 2 of insns to see if it can do register tying.

There is no way to specify constraints in match_operator. The operand of the insn

which corresponds to the match_operator never has any constraints because it is never

214 Using and Porting GNU CC

reloaded as a whole. However, if parts of its operands are matched by match_operand

patterns, those parts may have constraints of their own.

(match_op_dup:m n[operands. . .])

Like match_dup, except that it applies to operators instead of operands. When con-

structing an insn, operand number n will be substituted at this point. But in matching,

match_op_dup behaves differently. It assumes that operand number n has already been

determined by a match_operator appearing earlier in the recognition template, and it

matches only an identical-looking expression.

(match_parallel n predicate [subpat. . .])

This pattern is a placeholder for an insn that consists of a parallel expression with

a variable number of elements. This expression should only appear at the top level of

an insn pattern.

When constructing an insn, operand number n will be substituted at this point. When

matching an insn, it matches if the body of the insn is a parallel expression with

at least as many elements as the vector of subpat expressions in the match_parallel,

if each subpat matches the corresponding element of the parallel, and the function

predicate returns nonzero on the parallel that is the body of the insn. It is the

responsibility of the predicate to validate elements of the parallel beyond those listed

in the match_parallel.

A typical use of match_parallel is to match load and store multiple expressions, which

can contains a variable number of elements in a parallel. For example,

(define_insn ""
[(match_parallel 0 "load_multiple_operation"

[(set (match_operand:SI 1 "gpc_reg_operand" "=r")
(match_operand:SI 2 "memory_operand" "m"))

(use (reg:SI 179))
(clobber (reg:SI 179))])]

""
"loadm 0,0,%1,%2")

This example comes from ‘a29k.md’. The function load_multiple_operations is

defined in ‘a29k.c’ and checks that subsequent elements in the parallel are the same

as the set in the pattern, except that they are referencing subsequent registers and

memory locations.

An insn that matches this pattern might look like:

(parallel [(set (reg:SI 20) (mem:SI (reg:SI 100)))
(use (reg:SI 179))
(clobber (reg:SI 179))
(set (reg:SI 21) (mem:SI (plus:SI (reg:SI 100) (const_int 4))))
(set (reg:SI 22) (mem:SI (plus:SI (reg:SI 100) (const_int 8))))])

(match_par_dup n [subpat. . .])

Like match_op_dup, but for match_parallel instead of match_operator.

Chapter 13: Machine Descriptions 215

(address (match_operand:m n "address_operand" ""))

This complex of expressions is a placeholder for an operand number n in a “load

address” instruction: an operand which specifies a memory location in the usual way,

but for which the actual operand value used is the address of the location, not the

contents of the location.

address expressions never appear in RTL code, only in machine descriptions. And

they are used only in machine descriptions that do not use the operand constraint

feature. When operand constraints are in use, the letter ‘p’ in the constraint serves

this purpose.

m is the machine mode of the memory location being addressed, not the machine mode

of the address itself. That mode is always the same on a given target machine (it

is Pmode, which normally is SImode), so there is no point in mentioning it; thus, no

machine mode is written in the address expression. If some day support is added

for machines in which addresses of different kinds of objects appear differently or are

used differently (such as the PDP-10), different formats would perhaps need different

machine modes and these modes might be written in the address expression.

13.4 Output Templates and Operand Substitution

The output template is a string which specifies how to output the assembler code for an in-

struction pattern. Most of the template is a fixed string which is output literally. The character

‘%’ is used to specify where to substitute an operand; it can also be used to identify places where

different variants of the assembler require different syntax.

In the simplest case, a ‘%’ followed by a digit n says to output operand n at that point in the

string.

‘%’ followed by a letter and a digit says to output an operand in an alternate fashion. Four letters

have standard, built-in meanings described below. The machine description macro PRINT_OPERAND

can define additional letters with nonstandard meanings.

‘%cdigit’ can be used to substitute an operand that is a constant value without the syntax that

normally indicates an immediate operand.

‘%ndigit’ is like ‘%cdigit’ except that the value of the constant is negated before printing.

‘%adigit’ can be used to substitute an operand as if it were a memory reference, with the actual

operand treated as the address. This may be useful when outputting a “load address” instruction,

216 Using and Porting GNU CC

because often the assembler syntax for such an instruction requires you to write the operand as if

it were a memory reference.

‘%ldigit’ is used to substitute a label_ref into a jump instruction.

‘%=’ outputs a number which is unique to each instruction in the entire compilation. This is

useful for making local labels to be referred to more than once in a single template that generates

multiple assembler instructions.

‘%’ followed by a punctuation character specifies a substitution that does not use an operand.

Only one case is standard: ‘%%’ outputs a ‘%’ into the assembler code. Other nonstandard cases can

be defined in the PRINT_OPERAND macro. You must also define which punctuation characters are

valid with the PRINT_OPERAND_PUNCT_VALID_P macro.

The template may generate multiple assembler instructions. Write the text for the instructions,

with ‘\;’ between them.

When the RTL contains two operands which are required by constraint to match each other,

the output template must refer only to the lower-numbered operand. Matching operands are not

always identical, and the rest of the compiler arranges to put the proper RTL expression for printing

into the lower-numbered operand.

One use of nonstandard letters or punctuation following ‘%’ is to distinguish between different

assembler languages for the same machine; for example, Motorola syntax versus MIT syntax for

the 68000. Motorola syntax requires periods in most opcode names, while MIT syntax does not.

For example, the opcode ‘movel’ in MIT syntax is ‘move.l’ in Motorola syntax. The same file

of patterns is used for both kinds of output syntax, but the character sequence ‘%.’ is used in

each place where Motorola syntax wants a period. The PRINT_OPERAND macro for Motorola syntax

defines the sequence to output a period; the macro for MIT syntax defines it to do nothing.

13.5 C Statements for Generating Assembler Output

Often a single fixed template string cannot produce correct and efficient assembler code for all

the cases that are recognized by a single instruction pattern. For example, the opcodes may depend

on the kinds of operands; or some unfortunate combinations of operands may require extra machine

instructions.

Chapter 13: Machine Descriptions 217

If the output control string starts with a ‘@’, then it is actually a series of templates, each on

a separate line. (Blank lines and leading spaces and tabs are ignored.) The templates correspond

to the pattern’s constraint alternatives (see Section 13.6.2 [Multi-Alternative], page 223). For

example, if a target machine has a two-address add instruction ‘addr’ to add into a register and

another ‘addm’ to add a register to memory, you might write this pattern:

(define_insn "addsi3"
[(set (match_operand:SI 0 "general_operand" "=r,m")

(plus:SI (match_operand:SI 1 "general_operand" "0,0")
(match_operand:SI 2 "general_operand" "g,r")))]

""
"@
addr %2,%0
addm %2,%0")

If the output control string starts with a ‘*’, then it is not an output template but rather a piece

of C program that should compute a template. It should execute a return statement to return the

template-string you want. Most such templates use C string literals, which require doublequote

characters to delimit them. To include these doublequote characters in the string, prefix each one

with ‘\’.

The operands may be found in the array operands, whose C data type is rtx [].

It is very common to select different ways of generating assembler code based on whether an

immediate operand is within a certain range. Be careful when doing this, because the result of

INTVAL is an integer on the host machine. If the host machine has more bits in an int than the

target machine has in the mode in which the constant will be used, then some of the bits you get

from INTVAL will be superfluous. For proper results, you must carefully disregard the values of

those bits.

It is possible to output an assembler instruction and then go on to output or compute more of

them, using the subroutine output_asm_insn. This receives two arguments: a template-string and

a vector of operands. The vector may be operands, or it may be another array of rtx that you

declare locally and initialize yourself.

When an insn pattern has multiple alternatives in its constraints, often the appearance of the

assembler code is determined mostly by which alternative was matched. When this is so, the C

code can test the variable which_alternative, which is the ordinal number of the alternative that

was actually satisfied (0 for the first, 1 for the second alternative, etc.).

218 Using and Porting GNU CC

For example, suppose there are two opcodes for storing zero, ‘clrreg’ for registers and ‘clrmem’

for memory locations. Here is how a pattern could use which_alternative to choose between

them:

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r,m")

(const_int 0))]
""
"*
return (which_alternative == 0

? \"clrreg %0\" : \"clrmem %0\");
")

The example above, where the assembler code to generate was solely determined by the al-

ternative, could also have been specified as follows, having the output control string start with a

‘@’:

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r,m")

(const_int 0))]
""
"@
clrreg %0
clrmem %0")

13.6 Operand Constraints

Each match_operand in an instruction pattern can specify a constraint for the type of operands

allowed. Constraints can say whether an operand may be in a register, and which kinds of register;

whether the operand can be a memory reference, and which kinds of address; whether the operand

may be an immediate constant, and which possible values it may have. Constraints can also require

two operands to match.

13.6.1 Simple Constraints

The simplest kind of constraint is a string full of letters, each of which describes one kind of

operand that is permitted. Here are the letters that are allowed:

Chapter 13: Machine Descriptions 219

‘m’ A memory operand is allowed, with any kind of address that the machine supports in

general.

‘o’ A memory operand is allowed, but only if the address is offsettable. This means that

adding a small integer (actually, the width in bytes of the operand, as determined by

its machine mode) may be added to the address and the result is also a valid memory

address.

For example, an address which is constant is offsettable; so is an address that is the sum

of a register and a constant (as long as a slightly larger constant is also within the range

of address-offsets supported by the machine); but an autoincrement or autodecrement

address is not offsettable. More complicated indirect/indexed addresses may or may

not be offsettable depending on the other addressing modes that the machine supports.

Note that in an output operand which can be matched by another operand, the con-

straint letter ‘o’ is valid only when accompanied by both ‘<’ (if the target machine has

predecrement addressing) and ‘>’ (if the target machine has preincrement addressing).

‘V’ A memory operand that is not offsettable. In other words, anything that would fit the

‘m’ constraint but not the ‘o’ constraint.

‘<’ A memory operand with autodecrement addressing (either predecrement or postdecre-

ment) is allowed.

‘>’ A memory operand with autoincrement addressing (either preincrement or postincre-

ment) is allowed.

‘r’ A register operand is allowed provided that it is in a general register.

‘d’, ‘a’, ‘f’, . . .

Other letters can be defined in machine-dependent fashion to stand for particular classes

of registers. ‘d’, ‘a’ and ‘f’ are defined on the 68000/68020 to stand for data, address

and floating point registers.

‘i’ An immediate integer operand (one with constant value) is allowed. This includes

symbolic constants whose values will be known only at assembly time.

‘n’ An immediate integer operand with a known numeric value is allowed. Many systems

cannot support assembly-time constants for operands less than a word wide. Con-

straints for these operands should use ‘n’ rather than ‘i’.

‘I’, ‘J’, ‘K’, . . . ‘P’

Other letters in the range ‘I’ through ‘P’ may be defined in a machine-dependent fashion

to permit immediate integer operands with explicit integer values in specified ranges.

For example, on the 68000, ‘I’ is defined to stand for the range of values 1 to 8. This

is the range permitted as a shift count in the shift instructions.

‘E’ An immediate floating operand (expression code const_double) is allowed, but only if

the target floating point format is the same as that of the host machine (on which the

compiler is running).

220 Using and Porting GNU CC

‘F’ An immediate floating operand (expression code const_double) is allowed.

‘G’, ‘H’ ‘G’ and ‘H’ may be defined in a machine-dependent fashion to permit immediate floating

operands in particular ranges of values.

‘s’ An immediate integer operand whose value is not an explicit integer is allowed.

This might appear strange; if an insn allows a constant operand with a value not known

at compile time, it certainly must allow any known value. So why use ‘s’ instead of

‘i’? Sometimes it allows better code to be generated.

For example, on the 68000 in a fullword instruction it is possible to use an immediate

operand; but if the immediate value is between -128 and 127, better code results from

loading the value into a register and using the register. This is because the load into

the register can be done with a ‘moveq’ instruction. We arrange for this to happen by

defining the letter ‘K’ to mean “any integer outside the range -128 to 127”, and then

specifying ‘Ks’ in the operand constraints.

‘g’ Any register, memory or immediate integer operand is allowed, except for registers that

are not general registers.

‘X’ Any operand whatsoever is allowed, even if it does not satisfy general_operand. This

is normally used in the constraint of a match_scratch when certain alternatives will

not actually require a scratch register.

‘0’, ‘1’, ‘2’, . . . ‘9’

An operand that matches the specified operand number is allowed. If a digit is used

together with letters within the same alternative, the digit should come last.

This is called a matching constraint and what it really means is that the assembler

has only a single operand that fills two roles considered separate in the RTL insn. For

example, an add insn has two input operands and one output operand in the RTL, but

on most CISC machines an add instruction really has only two operands, one of them

an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More precisely, the two operands

that match must include one input-only operand and one output-only operand. More-

over, the digit must be a smaller number than the number of the operand that uses it

in the constraint.

For operands to match in a particular case usually means that they are identical-

looking RTL expressions. But in a few special cases specific kinds of dissimilarity are

allowed. For example, *x as an input operand will match *x++ as an output operand.

For proper results in such cases, the output template should always use the output-

operand’s number when printing the operand.

‘p’ An operand that is a valid memory address is allowed. This is for “load address” and

“push address” instructions.

Chapter 13: Machine Descriptions 221

‘p’ in the constraint must be accompanied by address_operand as the predicate in the

match_operand. This predicate interprets the mode specified in the match_operand

as the mode of the memory reference for which the address would be valid.

‘Q’, ‘R’, ‘S’, . . . ‘U’

Letters in the range ‘Q’ through ‘U’ may be defined in a machine-dependent fashion to

stand for arbitrary operand types. The machine description macro EXTRA_CONSTRAINT

is passed the operand as its first argument and the constraint letter as its second

operand.

A typical use for this would be to distinguish certain types of memory references that

affect other insn operands.

Do not define these constraint letters to accept register references (reg); the reload

pass does not expect this and would not handle it properly.

In order to have valid assembler code, each operand must satisfy its constraint. But a failure

to do so does not prevent the pattern from applying to an insn. Instead, it directs the compiler to

modify the code so that the constraint will be satisfied. Usually this is done by copying an operand

into a register.

Contrast, therefore, the two instruction patterns that follow:

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_dup 0)
(match_operand:SI 1 "general_operand" "r")))]

""
". . .")

which has two operands, one of which must appear in two places, and

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "r")))]

""
". . .")

222 Using and Porting GNU CC

which has three operands, two of which are required by a constraint to be identical. If we are

considering an insn of the form

(insn n prev next
(set (reg:SI 3)

(plus:SI (reg:SI 6) (reg:SI 109)))
. . .)

the first pattern would not apply at all, because this insn does not contain two identical subex-

pressions in the right place. The pattern would say, “That does not look like an add instruction;

try other patterns.” The second pattern would say, “Yes, that’s an add instruction, but there is

something wrong with it.” It would direct the reload pass of the compiler to generate additional

insns to make the constraint true. The results might look like this:

(insn n2 prev n
(set (reg:SI 3) (reg:SI 6))
. . .)

(insn n n2 next
(set (reg:SI 3)

(plus:SI (reg:SI 3) (reg:SI 109)))
. . .)

It is up to you to make sure that each operand, in each pattern, has constraints that can handle

any RTL expression that could be present for that operand. (When multiple alternatives are in

use, each pattern must, for each possible combination of operand expressions, have at least one

alternative which can handle that combination of operands.) The constraints don’t need to allow

any possible operand—when this is the case, they do not constrain—but they must at least point

the way to reloading any possible operand so that it will fit.

• If the constraint accepts whatever operands the predicate permits, there is no problem: reload-

ing is never necessary for this operand.

For example, an operand whose constraints permit everything except registers is safe provided

its predicate rejects registers.

An operand whose predicate accepts only constant values is safe provided its constraints include

the letter ‘i’. If any possible constant value is accepted, then nothing less than ‘i’ will do; if

the predicate is more selective, then the constraints may also be more selective.

• Any operand expression can be reloaded by copying it into a register. So if an operand’s

constraints allow some kind of register, it is certain to be safe. It need not permit all classes of

Chapter 13: Machine Descriptions 223

registers; the compiler knows how to copy a register into another register of the proper class

in order to make an instruction valid.

• A nonoffsettable memory reference can be reloaded by copying the address into a register. So

if the constraint uses the letter ‘o’, all memory references are taken care of.

• A constant operand can be reloaded by allocating space in memory to hold it as preinitialized

data. Then the memory reference can be used in place of the constant. So if the constraint

uses the letters ‘o’ or ‘m’, constant operands are not a problem.

• If the constraint permits a constant and a pseudo register used in an insn was not allocated to

a hard register and is equivalent to a constant, the register will be replaced with the constant.

If the predicate does not permit a constant and the insn is re-recognized for some reason, the

compiler will crash. Thus the predicate must always recognize any objects allowed by the

constraint.

If the operand’s predicate can recognize registers, but the constraint does not permit them, it

can make the compiler crash. When this operand happens to be a register, the reload pass will be

stymied, because it does not know how to copy a register temporarily into memory.

13.6.2 Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of possible operands. For example,

on the 68000, a logical-or instruction can combine register or an immediate value into memory, or

it can combine any kind of operand into a register; but it cannot combine one memory location

into another.

These constraints are represented as multiple alternatives. An alternative can be described by

a series of letters for each operand. The overall constraint for an operand is made from the letters

for this operand from the first alternative, a comma, the letters for this operand from the second

alternative, a comma, and so on until the last alternative. Here is how it is done for fullword

logical-or on the 68000:

(define_insn "iorsi3"
[(set (match_operand:SI 0 "general_operand" "=m,d")

(ior:SI (match_operand:SI 1 "general_operand" "%0,0")
(match_operand:SI 2 "general_operand" "dKs,dmKs")))]

. . .)

224 Using and Porting GNU CC

The first alternative has ‘m’ (memory) for operand 0, ‘0’ for operand 1 (meaning it must match

operand 0), and ‘dKs’ for operand 2. The second alternative has ‘d’ (data register) for operand

0, ‘0’ for operand 1, and ‘dmKs’ for operand 2. The ‘=’ and ‘%’ in the constraints apply to all the

alternatives; their meaning is explained in the next section (see Section 13.6.3 [Class Preferences],

page 224).

If all the operands fit any one alternative, the instruction is valid. Otherwise, for each alternative,

the compiler counts how many instructions must be added to copy the operands so that that

alternative applies. The alternative requiring the least copying is chosen. If two alternatives need

the same amount of copying, the one that comes first is chosen. These choices can be altered with

the ‘?’ and ‘!’ characters:

? Disparage slightly the alternative that the ‘?’ appears in, as a choice when no alternative

applies exactly. The compiler regards this alternative as one unit more costly for each

‘?’ that appears in it.

! Disparage severely the alternative that the ‘!’ appears in. This alternative can still be

used if it fits without reloading, but if reloading is needed, some other alternative will

be used.

When an insn pattern has multiple alternatives in its constraints, often the appearance of the

assembler code is determined mostly by which alternative was matched. When this is so, the C

code for writing the assembler code can use the variable which_alternative, which is the ordinal

number of the alternative that was actually satisfied (0 for the first, 1 for the second alternative,

etc.). See Section 13.5 [Output Statement], page 216.

13.6.3 Register Class Preferences

The operand constraints have another function: they enable the compiler to decide which kind

of hardware register a pseudo register is best allocated to. The compiler examines the constraints

that apply to the insns that use the pseudo register, looking for the machine-dependent letters such

as ‘d’ and ‘a’ that specify classes of registers. The pseudo register is put in whichever class gets the

most “votes”. The constraint letters ‘g’ and ‘r’ also vote: they vote in favor of a general register.

The machine description says which registers are considered general.

Of course, on some machines all registers are equivalent, and no register classes are defined.

Then none of this complexity is relevant.

Chapter 13: Machine Descriptions 225

13.6.4 Constraint Modifier Characters

‘=’ Means that this operand is write-only for this instruction: the previous value is dis-

carded and replaced by output data.

‘+’ Means that this operand is both read and written by the instruction.

When the compiler fixes up the operands to satisfy the constraints, it needs to know

which operands are inputs to the instruction and which are outputs from it. ‘=’ identifies

an output; ‘+’ identifies an operand that is both input and output; all other operands

are assumed to be input only.

‘&’ Means (in a particular alternative) that this operand is written before the instruction

is finished using the input operands. Therefore, this operand may not lie in a register

that is used as an input operand or as part of any memory address.

‘&’ applies only to the alternative in which it is written. In constraints with multi-

ple alternatives, sometimes one alternative requires ‘&’ while others do not. See, for

example, the ‘movdf’ insn of the 68000.

‘&’ does not obviate the need to write ‘=’.

‘%’ Declares the instruction to be commutative for this operand and the following operand.

This means that the compiler may interchange the two operands if that is the cheapest

way to make all operands fit the constraints. This is often used in patterns for addition

instructions that really have only two operands: the result must go in one of the

arguments. Here for example, is how the 68000 halfword-add instruction is defined:

(define_insn "addhi3"
[(set (match_operand:HI 0 "general_operand" "=m,r")

(plus:HI (match_operand:HI 1 "general_operand" "%0,0")
(match_operand:HI 2 "general_operand" "di,g")))]

. . .)

‘#’ Says that all following characters, up to the next comma, are to be ignored as a con-

straint. They are significant only for choosing register preferences.

‘*’ Says that the following character should be ignored when choosing register preferences.

‘*’ has no effect on the meaning of the constraint as a constraint, and no effect on

reloading.

Here is an example: the 68000 has an instruction to sign-extend a halfword in a data

register, and can also sign-extend a value by copying it into an address register. While

either kind of register is acceptable, the constraints on an address-register destination

are less strict, so it is best if register allocation makes an address register its goal.

Therefore, ‘*’ is used so that the ‘d’ constraint letter (for data register) is ignored when

computing register preferences.

226 Using and Porting GNU CC

(define_insn "extendhisi2"
[(set (match_operand:SI 0 "general_operand" "=*d,a")

(sign_extend:SI
(match_operand:HI 1 "general_operand" "0,g")))]

. . .)

13.6.5 Not Using Constraints

Some machines are so clean that operand constraints are not required. For example, on the Vax,

an operand valid in one context is valid in any other context. On such a machine, every operand

constraint would be ‘g’, excepting only operands of “load address” instructions which are written

as if they referred to a memory location’s contents but actual refer to its address. They would have

constraint ‘p’.

For such machines, instead of writing ‘g’ and ‘p’ for all the constraints, you can choose to write a

description with empty constraints. Then you write ‘""’ for the constraint in every match_operand.

Address operands are identified by writing an address expression around the match_operand, not

by their constraints.

When the machine description has just empty constraints, certain parts of compilation are

skipped, making the compiler faster. However, few machines actually do not need constraints; all

machine descriptions now in existence use constraints.

13.7 Standard Names for Patterns Used in Generation

Here is a table of the instruction names that are meaningful in the RTL generation pass of the

compiler. Giving one of these names to an instruction pattern tells the RTL generation pass that

it can use the pattern in to accomplish a certain task.

‘movm’ Here m stands for a two-letter machine mode name, in lower case. This instruction

pattern moves data with that machine mode from operand 1 to operand 0. For example,

‘movsi’ moves full-word data.

If operand 0 is a subreg with mode m of a register whose own mode is wider than m,

the effect of this instruction is to store the specified value in the part of the register

that corresponds to mode m. The effect on the rest of the register is undefined.

This class of patterns is special in several ways. First of all, each of these names must

be defined, because there is no other way to copy a datum from one place to another.

Chapter 13: Machine Descriptions 227

Second, these patterns are not used solely in the RTL generation pass. Even the reload

pass can generate move insns to copy values from stack slots into temporary registers.

When it does so, one of the operands is a hard register and the other is an operand

that can need to be reloaded into a register.

Therefore, when given such a pair of operands, the pattern must generate RTL which

needs no reloading and needs no temporary registers—no registers other than the

operands. For example, if you support the pattern with a define_expand, then in

such a case the define_expand mustn’t call force_reg or any other such function

which might generate new pseudo registers.

This requirement exists even for subword modes on a RISC machine where fetching

those modes from memory normally requires several insns and some temporary regis-

ters. Look in ‘spur.md’ to see how the requirement can be satisfied.

During reload a memory reference with an invalid address may be passed as an operand.

Such an address will be replaced with a valid address later in the reload pass. In this

case, nothing may be done with the address except to use it as it stands. If it is copied,

it will not be replaced with a valid address. No attempt should be made to make such

an address into a valid address and no routine (such as change_address) that will

do so may be called. Note that general_operand will fail when applied to such an

address.

The global variable reload_in_progress (which must be explicitly declared if re-

quired) can be used to determine whether such special handling is required.

The variety of operands that have reloads depends on the rest of the machine descrip-

tion, but typically on a RISC machine these can only be pseudo registers that did not

get hard registers, while on other machines explicit memory references will get optional

reloads.

If a scratch register is required to move an object to or from memory, it can be al-

located using gen_reg_rtx prior to reload. But this is impossible during and af-

ter reload. If there are cases needing scratch registers after reload, you must define

SECONDARY_INPUT_RELOAD_CLASS and/or SECONDARY_OUTPUT_RELOAD_CLASS to detect

them, and provide patterns ‘reload_inm’ or ‘reload_outm’ to handle them. See

Section 14.6 [Register Classes], page 285.

The constraints on a ‘movem’ must permit moving any hard register to any other hard

register provided that HARD_REGNO_MODE_OK permits mode m in both registers and

REGISTER_MOVE_COST applied to their classes returns a value of 2.

It is obligatory to support floating point ‘movem’ instructions into and out of any

registers that can hold fixed point values, because unions and structures (which have

modes SImode or DImode) can be in those registers and they may have floating point

members.

228 Using and Porting GNU CC

There may also be a need to support fixed point ‘movem’ instructions in and out of

floating point registers. Unfortunately, I have forgotten why this was so, and I don’t

know whether it is still true. If HARD_REGNO_MODE_OK rejects fixed point values in

floating point registers, then the constraints of the fixed point ‘movem’ instructions

must be designed to avoid ever trying to reload into a floating point register.

‘reload_inm’

‘reload_outm’

Like ‘movm’, but used when a scratch register is required to move between operand

0 and operand 1. Operand 2 describes the scratch register. See the discussion of the

SECONDARY_RELOAD_CLASS macro in see Section 14.6 [Register Classes], page 285.

‘movstrictm’

Like ‘movm’ except that if operand 0 is a subreg with mode m of a register whose

natural mode is wider, the ‘movstrictm’ instruction is guaranteed not to alter any of

the register except the part which belongs to mode m.

load_multiple

Load several consecutive memory locations into consecutive registers. Operand 0 is the

first of the consecutive registers, operand 1 is the first memory location, and operand

2 is a constant: the number of consecutive registers.

Define this only if the target machine really has such an instruction; do not define this

if the most efficient way of loading consecutive registers from memory is to do them

one at a time.

On some machines, there are restrictions as to which consecutive registers can be stored

into memory, such as particular starting or ending register numbers or only a range of

valid counts. For those machines, use a define_expand (see Section 13.13 [Expander

Definitions], page 245) and make the pattern fail if the restrictions are not met.

Write the generated insn as a parallel with elements being a set of one register from

the appropriate memory location (you may also need use or clobber elements). Use

a match_parallel (see Section 13.3 [RTL Template], page 211) to recognize the insn.

See ‘a29k.md’ and ‘rs6000.md’ for examples of the use of this insn pattern.

store_multiple

Similar to ‘load_multiple’, but store several consecutive registers into consecutive

memory locations. Operand 0 is the first of the consecutive memory locations, operand

1 is the first register, and operand 2 is a constant: the number of consecutive registers.

‘addm3’ Add operand 2 and operand 1, storing the result in operand 0. All operands must have

mode m. This can be used even on two-address machines, by means of constraints

requiring operands 1 and 0 to be the same location.

Chapter 13: Machine Descriptions 229

‘subm3’, ‘mulm3’

‘divm3’, ‘udivm3’, ‘modm3’, ‘umodm3’

‘sminm3’, ‘smaxm3’, ‘uminm3’, ‘umaxm3’

‘andm3’, ‘iorm3’, ‘xorm3’

Similar, for other arithmetic operations.

‘mulhisi3’

Multiply operands 1 and 2, which have mode HImode, and store a SImode product in

operand 0.

‘mulqihi3’, ‘mulsidi3’

Similar widening-multiplication instructions of other widths.

‘umulqihi3’, ‘umulhisi3’, ‘umulsidi3’

Similar widening-multiplication instructions that do unsigned multiplication.

‘divmodm4’

Signed division that produces both a quotient and a remainder. Operand 1 is divided

by operand 2 to produce a quotient stored in operand 0 and a remainder stored in

operand 3.

For machines with an instruction that produces both a quotient and a remainder,

provide a pattern for ‘divmodm4’ but do not provide patterns for ‘divm3’ and ‘modm3’.

This allows optimization in the relatively common case when both the quotient and

remainder are computed.

If an instruction that just produces a quotient or just a remainder exists and is more ef-

ficient than the instruction that produces both, write the output routine of ‘divmodm4’

to call find_reg_note and look for a REG_UNUSED note on the quotient or remainder

and generate the appropriate instruction.

‘udivmodm4’

Similar, but does unsigned division.

‘ashlm3’ Arithmetic-shift operand 1 left by a number of bits specified by operand 2, and store

the result in operand 0. Here m is the mode of operand 0 and operand 1; operand 2’s

mode is specified by the instruction pattern, and the compiler will convert the operand

to that mode before generating the instruction.

‘ashrm3’, ‘lshlm3’, ‘lshrm3’, ‘rotlm3’, ‘rotrm3’

Other shift and rotate instructions, analogous to the ashlm3 instructions.

Logical and arithmetic left shift are the same. Machines that do not allow negative

shift counts often have only one instruction for shifting left. On such machines, you

should define a pattern named ‘ashlm3’ and leave ‘lshlm3’ undefined.

‘negm2’ Negate operand 1 and store the result in operand 0.

‘absm2’ Store the absolute value of operand 1 into operand 0.

230 Using and Porting GNU CC

‘sqrtm2’ Store the square root of operand 1 into operand 0.

The sqrt built-in function of C always uses the mode which corresponds to the C data

type double.

‘ffsm2’ Store into operand 0 one plus the index of the least significant 1-bit of operand 1.

If operand 1 is zero, store zero. m is the mode of operand 0; operand 1’s mode is

specified by the instruction pattern, and the compiler will convert the operand to that

mode before generating the instruction.

The ffs built-in function of C always uses the mode which corresponds to the C data

type int.

‘one_cmplm2’

Store the bitwise-complement of operand 1 into operand 0.

‘cmpm’ Compare operand 0 and operand 1, and set the condition codes. The RTL pattern

should look like this:

(set (cc0) (compare (match_operand:m 0 . . .)
(match_operand:m 1 . . .)))

‘tstm’ Compare operand 0 against zero, and set the condition codes. The RTL pattern should

look like this:

(set (cc0) (match_operand:m 0 . . .))

‘tstm’ patterns should not be defined for machines that do not use (cc0). Doing so

would confuse the optimizer since it would no longer be clear which set operations

were comparisons. The ‘cmpm’ patterns should be used instead.

‘movstrm’ Block move instruction. The addresses of the destination and source strings are the

first two operands, and both are in mode Pmode. The number of bytes to move is the

third operand, in mode m.

The fourth operand is the known shared alignment of the source and destination, in the

form of a const_int rtx. Thus, if the compiler knows that both source and destination

are word-aligned, it may provide the value 4 for this operand.

These patterns need not give special consideration to the possibility that the source

and destination strings might overlap.

‘cmpstrm’ Block compare instruction, with five operands. Operand 0 is the output; it has mode

m. The remaining four operands are like the operands of ‘movstrm’. The two memory

blocks specified are compared byte by byte in lexicographic order. The effect of the

instruction is to store a value in operand 0 whose sign indicates the result of the

comparison.

‘floatmn2’

Convert signed integer operand 1 (valid for fixed point mode m) to floating point mode

n and store in operand 0 (which has mode n).

Chapter 13: Machine Descriptions 231

‘floatunsmn2’

Convert unsigned integer operand 1 (valid for fixed point mode m) to floating point

mode n and store in operand 0 (which has mode n).

‘fixmn2’ Convert operand 1 (valid for floating point mode m) to fixed point mode n as a signed

number and store in operand 0 (which has mode n). This instruction’s result is defined

only when the value of operand 1 is an integer.

‘fixunsmn2’

Convert operand 1 (valid for floating point mode m) to fixed point mode n as an

unsigned number and store in operand 0 (which has mode n). This instruction’s result

is defined only when the value of operand 1 is an integer.

‘ftruncm2’

Convert operand 1 (valid for floating point modem) to an integer value, still represented

in floating point mode m, and store it in operand 0 (valid for floating point mode m).

‘fix_truncmn2’

Like ‘fixmn2’ but works for any floating point value of modem by converting the value

to an integer.

‘fixuns_truncmn2’

Like ‘fixunsmn2’ but works for any floating point value of mode m by converting the

value to an integer.

‘truncmn’ Truncate operand 1 (valid for mode m) to mode n and store in operand 0 (which has

mode n). Both modes must be fixed point or both floating point.

‘extendmn’

Sign-extend operand 1 (valid for mode m) to mode n and store in operand 0 (which

has mode n). Both modes must be fixed point or both floating point.

‘zero_extendmn’

Zero-extend operand 1 (valid for mode m) to mode n and store in operand 0 (which

has mode n). Both modes must be fixed point.

‘extv’ Extract a bit field from operand 1 (a register or memory operand), where operand

2 specifies the width in bits and operand 3 the starting bit, and store it in operand

0. Operand 0 must have mode word_mode. Operand 1 may have mode byte_mode or

word_mode; often word_mode is allowed only for registers. Operands 2 and 3 must be

valid for word_mode.

The RTL generation pass generates this instruction only with constants for operands

2 and 3.

The bit-field value is sign-extended to a full word integer before it is stored in operand

0.

‘extzv’ Like ‘extv’ except that the bit-field value is zero-extended.

232 Using and Porting GNU CC

‘insv’ Store operand 3 (which must be valid for word_mode) into a bit field in operand 0,

where operand 1 specifies the width in bits and operand 2 the starting bit. Operand 0

may have mode byte_mode or word_mode; often word_mode is allowed only for registers.

Operands 1 and 2 must be valid for word_mode.

The RTL generation pass generates this instruction only with constants for operands

1 and 2.

‘scond’ Store zero or nonzero in the operand according to the condition codes. Value stored

is nonzero iff the condition cond is true. cond is the name of a comparison operation

expression code, such as eq, lt or leu.

You specify the mode that the operand must have when you write the match_operand

expression. The compiler automatically sees which mode you have used and supplies

an operand of that mode.

The value stored for a true condition must have 1 as its low bit, or else must be negative.

Otherwise the instruction is not suitable and you should omit it from the machine

description. You describe to the compiler exactly which value is stored by defining the

macro STORE_FLAG_VALUE (see Section 14.19 [Misc], page 350). If a description cannot

be found that can be used for all the ‘scond’ patterns, you should omit those operations

from the machine description.

These operations may fail, but should do so only in relatively uncommon cases; if they

would fail for common cases involving integer comparisons, it is best to omit these

patterns.

If these operations are omitted, the compiler will usually generate code that copies the

constant one to the target and branches around an assignment of zero to the target. If

this code is more efficient than the potential instructions used for the ‘scond’ pattern

followed by those required to convert the result into a 1 or a zero in SImode, you should

omit the ‘scond’ operations from the machine description.

‘bcond’ Conditional branch instruction. Operand 0 is a label_ref that refers to the label to

jump to. Jump if the condition codes meet condition cond.

Some machines do not follow the model assumed here where a comparison instruction

is followed by a conditional branch instruction. In that case, the ‘cmpm’ (and ‘tstm’)

patterns should simply store the operands away and generate all the required insns in a

define_expand (see Section 13.13 [Expander Definitions], page 245) for the conditional

branch operations. All calls to expand ‘bcond’ patterns are immediately preceded by

calls to expand either a ‘cmpm’ pattern or a ‘tstm’ pattern.

Machines that use a pseudo register for the condition code value, or where the mode

used for the comparison depends on the condition being tested, should also use the

above mechanism. See Section 13.10 [Jump Patterns], page 238

The above discussion also applies to ‘scond’ patterns.

Chapter 13: Machine Descriptions 233

‘call’ Subroutine call instruction returning no value. Operand 0 is the function to call;

operand 1 is the number of bytes of arguments pushed (in mode SImode, except it is

normally a const_int); operand 2 is the number of registers used as operands.

On most machines, operand 2 is not actually stored into the RTL pattern. It is sup-

plied for the sake of some RISC machines which need to put this information into the

assembler code; they can put it in the RTL instead of operand 1.

Operand 0 should be a mem RTX whose address is the address of the function. Note,

however, that this address can be a symbol_ref expression even if it would not be a

legitimate memory address on the target machine. If it is also not a valid argument

for a call instruction, the pattern for this operation should be a define_expand (see

Section 13.13 [Expander Definitions], page 245) that places the address into a register

and uses that register in the call instruction.

‘call_value’

Subroutine call instruction returning a value. Operand 0 is the hard register in which

the value is returned. There are three more operands, the same as the three operands

of the ‘call’ instruction (but with numbers increased by one).

Subroutines that return BLKmode objects use the ‘call’ insn.

‘call_pop’, ‘call_value_pop’

Similar to ‘call’ and ‘call_value’, except used if defined and if RETURN_POPS_ARGS

is non-zero. They should emit a parallel that contains both the function call and a

set to indicate the adjustment made to the frame pointer.

For machines where RETURN_POPS_ARGS can be non-zero, the use of these patterns

increases the number of functions for which the frame pointer can be eliminated, if

desired.

‘return’ Subroutine return instruction. This instruction pattern name should be defined only if

a single instruction can do all the work of returning from a function.

Like the ‘movm’ patterns, this pattern is also used after the RTL generation phase. In

this case it is to support machines where multiple instructions are usually needed to

return from a function, but some class of functions only requires one instruction to

implement a return. Normally, the applicable functions are those which do not need

to save any registers or allocate stack space.

For such machines, the condition specified in this pattern should only be true when

reload_completed is non-zero and the function’s epilogue would only be a single in-

struction. For machines with register windows, the routine leaf_function_p may be

used to determine if a register window push is required.

Machines that have conditional return instructions should define patterns such as

234 Using and Porting GNU CC

(define_insn ""
[(set (pc)

(if_then_else (match_operator 0 "comparison_operator"
[(cc0) (const_int 0)])

(return)
(pc)))]

"condition"
". . .")

where condition would normally be the same condition specified on the named ‘return’

pattern.

‘nop’ No-op instruction. This instruction pattern name should always be defined to output

a no-op in assembler code. (const_int 0) will do as an RTL pattern.

‘indirect_jump’

An instruction to jump to an address which is operand zero. This pattern name is

mandatory on all machines.

‘casesi’ Instruction to jump through a dispatch table, including bounds checking. This instruc-

tion takes five operands:

1. The index to dispatch on, which has mode SImode.

2. The lower bound for indices in the table, an integer constant.

3. The total range of indices in the table—the largest index minus the smallest one

(both inclusive).

4. A label that precedes the table itself.

5. A label to jump to if the index has a value outside the bounds. (If the machine-

description macro CASE_DROPS_THROUGH is defined, then an out-of-bounds index

drops through to the code following the jump table instead of jumping to this

label. In that case, this label is not actually used by the ‘casesi’ instruction, but

it is always provided as an operand.)

The table is a addr_vec or addr_diff_vec inside of a jump_insn. The number of

elements in the table is one plus the difference between the upper bound and the lower

bound.

‘tablejump’

Instruction to jump to a variable address. This is a low-level capability which can be

used to implement a dispatch table when there is no ‘casesi’ pattern.

This pattern requires two operands: the address or offset, and a label which should

immediately precede the jump table. If the macro CASE_VECTOR_PC_RELATIVE is de-

fined then the first operand is an offset which counts from the address of the table;

otherwise, it is an absolute address to jump to. In either case, the first operand has

mode Pmode.

The ‘tablejump’ insn is always the last insn before the jump table it uses. Its assembler

code normally has no need to use the second operand, but you should incorporate it in

Chapter 13: Machine Descriptions 235

the RTL pattern so that the jump optimizer will not delete the table as unreachable

code.

‘save_stack_block’

‘save_stack_function’

‘save_stack_nonlocal’

‘restore_stack_block’

‘restore_stack_function’

‘restore_stack_nonlocal’

Most machines save and restore the stack pointer by copying it to or from an object of

mode Pmode. Do not define these patterns on such machines.

Some machines require special handling for stack pointer saves and restores. On those

machines, define the patterns corresponding to the non-standard cases by using a

define_expand (see Section 13.13 [Expander Definitions], page 245) that produces

the required insns. The three types of saves and restores are:

1. ‘save_stack_block’ saves the stack pointer at the start of a block that allocates a

variable-sized object and ‘restore_stack_block’ restores the stack pointer when

the block is exited.

2. ‘save_stack_function’ and ‘restore_stack_function’ operate similarly for the

outermost block of a function and are used when the function allocates variable-

sized objects or calls alloca. Only the epilogue uses the restored stack pointer,

allowing a simpler save or restore sequence on some machines.

3. ‘save_stack_nonlocal’ is used in functions that contain labels branched to by

nested functions. It saves the stack pointer in such a way that the inner function

can use ‘restore_stack_nonlocal’ to restore the stack pointer. The compiler

generates code to restore the frame and argument pointer registers, but some

machines require saving and restoring additional data such as register window

information or stack backchains. Place insns in these patterns to save and restore

any such required data.

When saving the stack pointer, operand 0 is the save area and operand 1 is the stack

pointer. The mode used to allocate the save area is the mode of operand 0. You must

specify an integral mode, or VOIDmode if no save area is needed for a particular type

of save (either because no save is needed or because a machine-specific save area can

be used). Operand 0 is the stack pointer and operand 1 is the save area for restore

operations. If ‘save_stack_block’ is defined, operand 0 must not be VOIDmode since

these saves can be arbitrarily nested.

A save area is a mem that is at a constant offset from virtual_stack_vars_rtx when

the stack pointer is saved for use by nonlocal gotos and a reg in the other two cases.

236 Using and Porting GNU CC

‘allocate_stack’

Subtract operand 0 from the stack pointer to create space for for dynamically allocated

data.

Do not define this pattern if all that must be done is the subtraction. On some machines

require other operations such as stack probes or maintaining the back chain. Define

this pattern to emit those operations in addition to updating the stack pointer.

13.8 When the Order of Patterns Matters

Sometimes an insn can match more than one instruction pattern. Then the pattern that appears

first in the machine description is the one used. Therefore, more specific patterns (patterns that

will match fewer things) and faster instructions (those that will produce better code when they do

match) should usually go first in the description.

In some cases the effect of ordering the patterns can be used to hide a pattern when it is not

valid. For example, the 68000 has an instruction for converting a fullword to floating point and

another for converting a byte to floating point. An instruction converting an integer to floating

point could match either one. We put the pattern to convert the fullword first to make sure that one

will be used rather than the other. (Otherwise a large integer might be generated as a single-byte

immediate quantity, which would not work.) Instead of using this pattern ordering it would be

possible to make the pattern for convert-a-byte smart enough to deal properly with any constant

value.

13.9 Interdependence of Patterns

Every machine description must have a named pattern for each of the conditional branch names

‘bcond’. The recognition template must always have the form

(set (pc)
(if_then_else (cond (cc0) (const_int 0))

(label_ref (match_operand 0 "" ""))
(pc)))

In addition, every machine description must have an anonymous pattern for each of the possible

reverse-conditional branches. Their templates look like

Chapter 13: Machine Descriptions 237

(set (pc)
(if_then_else (cond (cc0) (const_int 0))

(pc)
(label_ref (match_operand 0 "" ""))))

They are necessary because jump optimization can turn direct-conditional branches into reverse-

conditional branches.

It is often convenient to use the match_operator construct to reduce the number of patterns

that must be specified for branches. For example,

(define_insn ""
[(set (pc)

(if_then_else (match_operator 0 "comparison_operator"
[(cc0) (const_int 0)])

(pc)
(label_ref (match_operand 1 "" ""))))]

"condition"
". . .")

In some cases machines support instructions identical except for the machine mode of one or more

operands. For example, there may be “sign-extend halfword” and “sign-extend byte” instructions

whose patterns are

(set (match_operand:SI 0 . . .)
(extend:SI (match_operand:HI 1 . . .)))

(set (match_operand:SI 0 . . .)
(extend:SI (match_operand:QI 1 . . .)))

Constant integers do not specify a machine mode, so an instruction to extend a constant value

could match either pattern. The pattern it actually will match is the one that appears first in the

file. For correct results, this must be the one for the widest possible mode (HImode, here). If the

pattern matches the QImode instruction, the results will be incorrect if the constant value does not

actually fit that mode.

Such instructions to extend constants are rarely generated because they are optimized away, but

they do occasionally happen in nonoptimized compilations.

238 Using and Porting GNU CC

If a constraint in a pattern allows a constant, the reload pass may replace a register with a

constant permitted by the constraint in some cases. Similarly for memory references. You must

ensure that the predicate permits all objects allowed by the constraints to prevent the compiler

from crashing.

Because of this substitution, you should not provide separate patterns for increment and decre-

ment instructions. Instead, they should be generated from the same pattern that supports register-

register add insns by examining the operands and generating the appropriate machine instruction.

13.10 Defining Jump Instruction Patterns

For most machines, GNU CC assumes that the machine has a condition code. A comparison

insn sets the condition code, recording the results of both signed and unsigned comparison of the

given operands. A separate branch insn tests the condition code and branches or not according its

value. The branch insns come in distinct signed and unsigned flavors. Many common machines,

such as the Vax, the 68000 and the 32000, work this way.

Some machines have distinct signed and unsigned compare instructions, and only one set of

conditional branch instructions. The easiest way to handle these machines is to treat them just

like the others until the final stage where assembly code is written. At this time, when outputting

code for the compare instruction, peek ahead at the following branch using next_cc0_user (insn).

(The variable insn refers to the insn being output, in the output-writing code in an instruction

pattern.) If the RTL says that is an unsigned branch, output an unsigned compare; otherwise

output a signed compare. When the branch itself is output, you can treat signed and unsigned

branches identically.

The reason you can do this is that GNU CC always generates a pair of consecutive RTL insns,

possibly separated by note insns, one to set the condition code and one to test it, and keeps the

pair inviolate until the end.

To go with this technique, you must define the machine-description macro NOTICE_UPDATE_CC

to do CC_STATUS_INIT; in other words, no compare instruction is superfluous.

Some machines have compare-and-branch instructions and no condition code. A similar tech-

nique works for them. When it is time to “output” a compare instruction, record its operands

in two static variables. When outputting the branch-on-condition-code instruction that follows,

actually output a compare-and-branch instruction that uses the remembered operands.

Chapter 13: Machine Descriptions 239

It also works to define patterns for compare-and-branch instructions. In optimizing compilation,

the pair of compare and branch instructions will be combined according to these patterns. But this

does not happen if optimization is not requested. So you must use one of the solutions above in

addition to any special patterns you define.

In many RISC machines, most instructions do not affect the condition code and there may not

even be a separate condition code register. On these machines, the restriction that the defini-

tion and use of the condition code be adjacent insns is not necessary and can prevent important

optimizations. For example, on the IBM RS/6000, there is a delay for taken branches unless the

condition code register is set three instructions earlier than the conditional branch. The instruction

scheduler cannot perform this optimization if it is not permitted to separate the definition and use

of the condition code register.

On these machines, do not use (cc0), but instead use a register to represent the condition code.

If there is a specific condition code register in the machine, use a hard register. If the condition

code or comparison result can be placed in any general register, or if there are multiple condition

registers, use a pseudo register.

On some machines, the type of branch instruction generated may depend on the way the con-

dition code was produced; for example, on the 68k and Sparc, setting the condition code directly

from an add or subtract instruction does not clear the overflow bit the way that a test instruction

does, so a different branch instruction must be used for some conditional branches. For machines

that use (cc0), the set and use of the condition code must be adjacent (separated only by note

insns) allowing flags in cc_status to be used. (See Section 14.12 [Condition Code], page 318.)

Also, the comparison and branch insns can be located from each other by using the functions

prev_cc0_setter and next_cc0_user.

However, this is not true on machines that do not use (cc0). On those machines, no assumptions

can be made about the adjacency of the compare and branch insns and the above methods cannot

be used. Instead, we use the machine mode of the condition code register to record different formats

of the condition code register.

Registers used to store the condition code value should have a mode that is in class MODE_CC.

Normally, it will be CCmode. If additional modes are required (as for the add example mentioned

above in the Sparc), define the macro EXTRA_CC_MODES to list the additional modes required (see

Section 14.12 [Condition Code], page 318). Also define EXTRA_CC_NAMES to list the names of those

modes and SELECT_CC_MODE to choose a mode given an operand of a compare.

240 Using and Porting GNU CC

If it is known during RTL generation that a different mode will be required (for example, if

the machine has separate compare instructions for signed and unsigned quantities, like most IBM

processors), they can be specified at that time.

If the cases that require different modes would be made by instruction combination, the macro

SELECT_CC_MODE determines which machine mode should be used for the comparison result. The

patterns should be written using that mode. To support the case of the add on the Sparc discussed

above, we have the pattern

(define_insn ""
[(set (reg:CC_NOOV 0)

(compare:CC_NOOV (plus:SI (match_operand:SI 0 "register_operand" "%r")
(match_operand:SI 1 "arith_operand" "rI"))

(const_int 0)))]
""
". . .")

The SELECT_CC_MODEmacro on the Sparc returns CC_NOOVmode for comparisons whose argument

is a plus.

13.11 Canonicalization of Instructions

There are often cases where multiple RTL expressions could represent an operation performed by

a single machine instruction. This situation is most commonly encountered with logical, branch, and

multiply-accumulate instructions. In such cases, the compiler attempts to convert these multiple

RTL expressions into a single canonical form to reduce the number of insn patterns required.

In addition to algebraic simplifications, following canonicalizations are performed:

• For commutative and comparison operators, a constant is always made the second operand. If

a machine only supports a constant as the second operand, only patterns that match a constant

in the second operand need be supplied.

For these operators, if only one operand is a neg, not, mult, plus, or minus expression, it will

be the first operand.

• For the compare operator, a constant is always the second operand on machines where cc0 is

used (see Section 13.10 [Jump Patterns], page 238). On other machines, there are rare cases

where the compiler might want to construct a compare with a constant as the first operand.

Chapter 13: Machine Descriptions 241

However, these cases are not common enough for it to be worthwhile to provide a pattern

matching a constant as the first operand unless the machine actually has such an instruction.

An operand of neg, not, mult, plus, or minus is made the first operand under the same

conditions as above.

• (minus x (const_int n)) is converted to (plus x (const_int -n)).

• Within address computations (i.e., inside mem), a left shift is converted into the appropriate

multiplication by a power of two.

De‘Morgan’s Law is used to move bitwise negation inside a bitwise logical-and or logical-or

operation. If this results in only one operand being a not expression, it will be the first one.

A machine that has an instruction that performs a bitwise logical-and of one operand with the

bitwise negation of the other should specify the pattern for that instruction as

(define_insn ""
[(set (match_operand:m 0 . . .)

(and:m (not:m (match_operand:m 1 . . .))
(match_operand:m 2 . . .)))]

". . ."
". . .")

Similarly, a pattern for a “NAND” instruction should be written

(define_insn ""
[(set (match_operand:m 0 . . .)

(ior:m (not:m (match_operand:m 1 . . .))
(not:m (match_operand:m 2 . . .))))]

". . ."
". . .")

In both cases, it is not necessary to include patterns for the many logically equivalent RTL

expressions.

• The only possible RTL expressions involving both bitwise exclusive-or and bitwise negation

are (xor:m x) y) and (not:m (xor:m x y)).

• The sum of three items, one of which is a constant, will only appear in the form

(plus:m (plus:m x y) constant)

• On machines that do not use cc0, (compare x (const_int 0)) will be converted to x.

• Equality comparisons of a group of bits (usually a single bit) with zero will be written using

zero_extract rather than the equivalent and or sign_extract operations.

13.12 Defining Machine-Specific Peephole Optimizers

In addition to instruction patterns the ‘md’ file may contain definitions of machine-specific peep-

hole optimizations.

242 Using and Porting GNU CC

The combiner does not notice certain peephole optimizations when the data flow in the program

does not suggest that it should try them. For example, sometimes two consecutive insns related in

purpose can be combined even though the second one does not appear to use a register computed

in the first one. A machine-specific peephole optimizer can detect such opportunities.

A definition looks like this:

(define_peephole
[insn-pattern-1
insn-pattern-2
. . .]

"condition"
"template"
"optional insn-attributes")

The last string operand may be omitted if you are not using any machine-specific information in

this machine description. If present, it must obey the same rules as in a define_insn.

In this skeleton, insn-pattern-1 and so on are patterns to match consecutive insns. The opti-

mization applies to a sequence of insns when insn-pattern-1 matches the first one, insn-pattern-2

matches the next, and so on.

Each of the insns matched by a peephole must also match a define_insn. Peepholes are

checked only at the last stage just before code generation, and only optionally. Therefore, any insn

which would match a peephole but no define_insn will cause a crash in code generation in an

unoptimized compilation, or at various optimization stages.

The operands of the insns are matched with match_operands, match_operator, and match_dup,

as usual. What is not usual is that the operand numbers apply to all the insn patterns in the

definition. So, you can check for identical operands in two insns by using match_operand in one

insn and match_dup in the other.

The operand constraints used in match_operand patterns do not have any direct effect on the

applicability of the peephole, but they will be validated afterward, so make sure your constraints

are general enough to apply whenever the peephole matches. If the peephole matches but the

constraints are not satisfied, the compiler will crash.

It is safe to omit constraints in all the operands of the peephole; or you can write constraints

which serve as a double-check on the criteria previously tested.

Chapter 13: Machine Descriptions 243

Once a sequence of insns matches the patterns, the condition is checked. This is a C expression

which makes the final decision whether to perform the optimization (we do so if the expression is

nonzero). If condition is omitted (in other words, the string is empty) then the optimization is

applied to every sequence of insns that matches the patterns.

The defined peephole optimizations are applied after register allocation is complete. Therefore,

the peephole definition can check which operands have ended up in which kinds of registers, just

by looking at the operands.

The way to refer to the operands in condition is to write operands[i] for operand number i (as

matched by (match_operand i . . .)). Use the variable insn to refer to the last of the insns being

matched; use prev_nonnote_insn to find the preceding insns.

When optimizing computations with intermediate results, you can use condition to match only

when the intermediate results are not used elsewhere. Use the C expression dead_or_set_p (insn,

op), where insn is the insn in which you expect the value to be used for the last time (from the

value of insn, together with use of prev_nonnote_insn), and op is the intermediate value (from

operands[i]).

Applying the optimization means replacing the sequence of insns with one new insn. The

template controls ultimate output of assembler code for this combined insn. It works exactly like

the template of a define_insn. Operand numbers in this template are the same ones used in

matching the original sequence of insns.

The result of a defined peephole optimizer does not need to match any of the insn patterns

in the machine description; it does not even have an opportunity to match them. The peephole

optimizer definition itself serves as the insn pattern to control how the insn is output.

Defined peephole optimizers are run as assembler code is being output, so the insns they produce

are never combined or rearranged in any way.

Here is an example, taken from the 68000 machine description:

(define_peephole
[(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
(set (match_operand:DF 0 "register_operand" "=f")

(match_operand:DF 1 "register_operand" "ad"))]
"FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"
"*

244 Using and Porting GNU CC

{
rtx xoperands[2];
xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);

#ifdef MOTOROLA
output_asm_insn (\"move.l %1,(sp)\", xoperands);
output_asm_insn (\"move.l %1,-(sp)\", operands);
return \"fmove.d (sp)+,%0\";

#else
output_asm_insn (\"movel %1,sp@\", xoperands);
output_asm_insn (\"movel %1,sp@-\", operands);
return \"fmoved sp@+,%0\";

#endif
}
")

The effect of this optimization is to change

jbsr _foobar
addql #4,sp
movel d1,sp@-
movel d0,sp@-
fmoved sp@+,fp0

into

jbsr _foobar
movel d1,sp@
movel d0,sp@-
fmoved sp@+,fp0

insn-pattern-1 and so on look almost like the second operand of define_insn. There is one

important difference: the second operand of define_insn consists of one or more RTX’s enclosed

in square brackets. Usually, there is only one: then the same action can be written as an element

of a define_peephole. But when there are multiple actions in a define_insn, they are implicitly

enclosed in a parallel. Then you must explicitly write the parallel, and the square brackets

within it, in the define_peephole. Thus, if an insn pattern looks like this,

Chapter 13: Machine Descriptions 245

(define_insn "divmodsi4"
[(set (match_operand:SI 0 "general_operand" "=d")

(div:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dmsK")))

(set (match_operand:SI 3 "general_operand" "=d")
(mod:SI (match_dup 1) (match_dup 2)))]

"TARGET_68020"
"divsl%.l %2,%3:%0")

then the way to mention this insn in a peephole is as follows:

(define_peephole
[. . .
(parallel
[(set (match_operand:SI 0 "general_operand" "=d")

(div:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dmsK")))

(set (match_operand:SI 3 "general_operand" "=d")
(mod:SI (match_dup 1) (match_dup 2)))])

. . .]
. . .)

13.13 Defining RTL Sequences for Code Generation

On some target machines, some standard pattern names for RTL generation cannot be handled

with single insn, but a sequence of RTL insns can represent them. For these target machines, you

can write a define_expand to specify how to generate the sequence of RTL.

A define_expand is an RTL expression that looks almost like a define_insn; but, unlike the

latter, a define_expand is used only for RTL generation and it can produce more than one RTL

insn.

A define_expand RTX has four operands:

• The name. Each define_expand must have a name, since the only use for it is to refer to it

by name.

• The RTL template. This is just like the RTL template for a define_peephole in that it is a

vector of RTL expressions each being one insn.

• The condition, a string containing a C expression. This expression is used to express how the

availability of this pattern depends on subclasses of target machine, selected by command-line

246 Using and Porting GNU CC

options when GNU CC is run. This is just like the condition of a define_insn that has a

standard name.

• The preparation statements, a string containing zero or more C statements which are to be

executed before RTL code is generated from the RTL template.

Usually these statements prepare temporary registers for use as internal operands in the RTL

template, but they can also generate RTL insns directly by calling routines such as emit_insn,

etc. Any such insns precede the ones that come from the RTL template.

Every RTL insn emitted by a define_expand must match some define_insn in the machine

description. Otherwise, the compiler will crash when trying to generate code for the insn or trying

to optimize it.

The RTL template, in addition to controlling generation of RTL insns, also describes the

operands that need to be specified when this pattern is used. In particular, it gives a predicate for

each operand.

A true operand, which needs to be specified in order to generate RTL from the pattern, should

be described with a match_operand in its first occurrence in the RTL template. This enters

information on the operand’s predicate into the tables that record such things. GNU CC uses the

information to preload the operand into a register if that is required for valid RTL code. If the

operand is referred to more than once, subsequent references should use match_dup.

The RTL template may also refer to internal “operands” which are temporary registers or labels

used only within the sequence made by the define_expand. Internal operands are substituted into

the RTL template with match_dup, never with match_operand. The values of the internal operands

are not passed in as arguments by the compiler when it requests use of this pattern. Instead, they

are computed within the pattern, in the preparation statements. These statements compute the

values and store them into the appropriate elements of operands so that match_dup can find them.

There are two special macros defined for use in the preparation statements: DONE and FAIL. Use

them with a following semicolon, as a statement.

DONE Use the DONE macro to end RTL generation for the pattern. The only RTL insns

resulting from the pattern on this occasion will be those already emitted by explicit

calls to emit_insn within the preparation statements; the RTL template will not be

generated.

Chapter 13: Machine Descriptions 247

FAIL Make the pattern fail on this occasion. When a pattern fails, it means that the pattern

was not truly available. The calling routines in the compiler will try other strategies

for code generation using other patterns.

Failure is currently supported only for binary (addition, multiplication, shifting, etc.)

and bitfield (extv, extzv, and insv) operations.

Here is an example, the definition of left-shift for the SPUR chip:

(define_expand "ashlsi3"
[(set (match_operand:SI 0 "register_operand" "")

(ashift:SI
(match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "nonmemory_operand" "")))]

""
"

{
if (GET_CODE (operands[2]) != CONST_INT

|| (unsigned) INTVAL (operands[2]) > 3)
FAIL;

}")

This example uses define_expand so that it can generate an RTL insn for shifting when the shift-

count is in the supported range of 0 to 3 but fail in other cases where machine insns aren’t available.

When it fails, the compiler tries another strategy using different patterns (such as, a library call).

If the compiler were able to handle nontrivial condition-strings in patterns with names, then it

would be possible to use a define_insn in that case. Here is another case (zero-extension on the

68000) which makes more use of the power of define_expand:

(define_expand "zero_extendhisi2"
[(set (match_operand:SI 0 "general_operand" "")

(const_int 0))
(set (strict_low_part

(subreg:HI
(match_dup 0)
0))

(match_operand:HI 1 "general_operand" ""))]
""
"operands[1] = make_safe_from (operands[1], operands[0]);")

248 Using and Porting GNU CC

Here two RTL insns are generated, one to clear the entire output operand and the other to copy

the input operand into its low half. This sequence is incorrect if the input operand refers to [the old

value of] the output operand, so the preparation statement makes sure this isn’t so. The function

make_safe_from copies the operands[1] into a temporary register if it refers to operands[0]. It

does this by emitting another RTL insn.

Finally, a third example shows the use of an internal operand. Zero-extension on the SPUR chip

is done by and-ing the result against a halfword mask. But this mask cannot be represented by a

const_int because the constant value is too large to be legitimate on this machine. So it must be

copied into a register with force_reg and then the register used in the and.

(define_expand "zero_extendhisi2"
[(set (match_operand:SI 0 "register_operand" "")

(and:SI (subreg:SI
(match_operand:HI 1 "register_operand" "")
0)

(match_dup 2)))]
""
"operands[2]

= force_reg (SImode, gen_rtx (CONST_INT,
VOIDmode, 65535)); ")

Note: If the define_expand is used to serve a standard binary or unary arithmetic operation

or a bitfield operation, then the last insn it generates must not be a code_label, barrier or note.

It must be an insn, jump_insn or call_insn. If you don’t need a real insn at the end, emit an

insn to copy the result of the operation into itself. Such an insn will generate no code, but it can

avoid problems in the compiler.

13.14 Splitting Instructions into Multiple Instructions

There are two cases where you should specify how to split a pattern into multiple insns. On

machines that have instructions requiring delay slots (see Section 13.15.7 [Delay Slots], page 260)

or that have instructions whose output is not available for multiple cycles (see Section 13.15.8

[Function Units], page 262), the compiler phases that optimize these cases need to be able to

move insns into one-cycle delay slots. However, some insns may generate more than one machine

instruction. These insns cannot be placed into a delay slot.

Often you can rewrite the single insn as a list of individual insns, each corresponding to one

machine instruction. The disadvantage of doing so is that it will cause the compilation to be

Chapter 13: Machine Descriptions 249

slower and require more space. If the resulting insns are too complex, it may also suppress some

optimizations. The compiler splits the insn if there is a reason to believe that it might improve

instruction or delay slot scheduling.

The insn combiner phase also splits putative insns. If three insns are merged into one insn with

a complex expression that cannot be matched by some define_insn pattern, the combiner phase

attempts to split the complex pattern into two insns that are recognized. Usually it can break the

complex pattern into two patterns by splitting out some subexpression. However, in some other

cases, such as performing an addition of a large constant in two insns on a RISC machine, the way

to split the addition into two insns is machine-dependent.

The define_split definition tells the compiler how to split a complex insn into several simpler

insns. It looks like this:

(define_split
[insn-pattern]
"condition"
[new-insn-pattern-1
new-insn-pattern-2
. . .]

"preparation statements")

insn-pattern is a pattern that needs to be split and condition is the final condition to be tested,

as in a define_insn. When an insn matching insn-pattern and satisfying condition is found, it is

replaced in the insn list with the insns given by new-insn-pattern-1, new-insn-pattern-2, etc.

The preparation statements are similar to those specified for define_expand (see Section 13.13

[Expander Definitions], page 245) and are executed before the new RTL is generated to prepare for

the generated code or emit some insns whose pattern is not fixed. Unlike those in define_expand,

however, these statements must not generate any new pseudo-registers. Once reload has completed,

they also must not allocate any space in the stack frame.

Patterns are matched against insn-pattern in two different circumstances. If an insn needs to be

split for delay slot scheduling or insn scheduling, the insn is already known to be valid, which means

that it must have been matched by some define_insn and, if reload_completed is non-zero, is

known to satisfy the constraints of that define_insn. In that case, the new insn patterns must

also be insns that are matched by some define_insn and, if reload_completed is non-zero, must

also satisfy the constraints of those definitions.

250 Using and Porting GNU CC

As an example of this usage of define_split, consider the following example from ‘a29k.md’,

which splits a sign_extend from HImode to SImode into a pair of shift insns:

(define_split
[(set (match_operand:SI 0 "gen_reg_operand" "")

(sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]
""
[(set (match_dup 0)

(ashift:SI (match_dup 1)
(const_int 16)))

(set (match_dup 0)
(ashiftrt:SI (match_dup 0)

(const_int 16)))]
"

{ operands[1] = gen_lowpart (SImode, operands[1]); }")

When the combiner phase tries to split an insn pattern, it is always the case that the pattern

is not matched by any define_insn. The combiner pass first tries to split a single set expression

and then the same set expression inside a parallel, but followed by a clobber of a pseudo-reg

to use as a scratch register. In these cases, the combiner expects exactly two new insn patterns to

be generated. It will verify that these patterns match some define_insn definitions, so you need

not do this test in the define_split (of course, there is no point in writing a define_split that

will never produce insns that match).

Here is an example of this use of define_split, taken from ‘rs6000.md’:

(define_split
[(set (match_operand:SI 0 "gen_reg_operand" "")

(plus:SI (match_operand:SI 1 "gen_reg_operand" "")
(match_operand:SI 2 "non_add_cint_operand" "")))]

""
[(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]

"
{
int low = INTVAL (operands[2]) & 0xffff;
int high = (unsigned) INTVAL (operands[2]) >> 16;

if (low & 0x8000)
high++, low |= 0xffff0000;

operands[3] = gen_rtx (CONST_INT, VOIDmode, high << 16);
operands[4] = gen_rtx (CONST_INT, VOIDmode, low);

}")

Chapter 13: Machine Descriptions 251

Here the predicate non_add_cint_operandmatches any const_int that is not a valid operand

of a single add insn. Write the add with the smaller displacement is written so that it can be

substituted into the address of a subsequent operation.

An example that uses a scratch register, from the same file, generates an equality comparison

of a register and a large constant:

(define_split
[(set (match_operand:CC 0 "cc_reg_operand" "")

(compare:CC (match_operand:SI 1 "gen_reg_operand" "")
(match_operand:SI 2 "non_short_cint_operand" "")))

(clobber (match_operand:SI 3 "gen_reg_operand" ""))]
"find_single_use (operands[0], insn, 0)
&& (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ

|| GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
[(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
(set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]

"
{
/* Get the constant we are comparing against, C, and see what it looks like

sign-extended to 16 bits. Then see what constant could be XOR’ed
with C to get the sign-extended value. */

int c = INTVAL (operands[2]);
int sextc = (c << 16) >> 16;
int xorv = c ^ sextc;

operands[4] = gen_rtx (CONST_INT, VOIDmode, xorv);
operands[5] = gen_rtx (CONST_INT, VOIDmode, sextc);

}")

To avoid confusion, don’t write a single define_split that accepts some insns that match

some define_insn as well as some insns that don’t. Instead, write two separate define_split

definitions, one for the insns that are valid and one for the insns that are not valid.

13.15 Instruction Attributes

In addition to describing the instruction supported by the target machine, the ‘md’ file also

defines a group of attributes and a set of values for each. Every generated insn is assigned a value

for each attribute. One possible attribute would be the effect that the insn has on the machine’s

condition code. This attribute can then be used by NOTICE_UPDATE_CC to track the condition codes.

252 Using and Porting GNU CC

13.15.1 Defining Attributes and their Values

The define_attr expression is used to define each attribute required by the target machine. It

looks like:

(define_attr name list-of-values default)

name is a string specifying the name of the attribute being defined.

list-of-values is either a string that specifies a comma-separated list of values that can be assigned

to the attribute, or a null string to indicate that the attribute takes numeric values.

default is an attribute expression that gives the value of this attribute for insns that match

patterns whose definition does not include an explicit value for this attribute. See Section 13.15.4

[Attr Example], page 257, for more information on the handling of defaults. See Section 13.15.6

[Constant Attributes], page 260, for information on attributes that do not depend on any particular

insn.

For each defined attribute, a number of definitions are written to the ‘insn-attr.h’ file. For

cases where an explicit set of values is specified for an attribute, the following are defined:

• A ‘#define’ is written for the symbol ‘HAVE_ATTR_name’.

• An enumeral class is defined for ‘attr_name’ with elements of the form ‘upper-name_upper-

value’ where the attribute name and value are first converted to upper case.

• A function ‘get_attr_name’ is defined that is passed an insn and returns the attribute value

for that insn.

For example, if the following is present in the ‘md’ file:

(define_attr "type" "branch,fp,load,store,arith" . . .)

the following lines will be written to the file ‘insn-attr.h’.

#define HAVE_ATTR_type

Chapter 13: Machine Descriptions 253

enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD,
TYPE_STORE, TYPE_ARITH};

extern enum attr_type get_attr_type ();

If the attribute takes numeric values, no enum type will be defined and the function to obtain

the attribute’s value will return int.

13.15.2 Attribute Expressions

RTL expressions used to define attributes use the codes described above plus a few specific

to attribute definitions, to be discussed below. Attribute value expressions must have one of the

following forms:

(const_int i)

The integer i specifies the value of a numeric attribute. i must be non-negative.

The value of a numeric attribute can be specified either with a const_int or as an

integer represented as a string in const_string, eq_attr (see below), and set_attr

(see Section 13.15.3 [Tagging Insns], page 255) expressions.

(const_string value)

The string value specifies a constant attribute value. If value is specified as ‘"*"’, it

means that the default value of the attribute is to be used for the insn containing this

expression. ‘"*"’ obviously cannot be used in the default expression of a define_attr.

If the attribute whose value is being specified is numeric, value must be a string contain-

ing a non-negative integer (normally const_int would be used in this case). Otherwise,

it must contain one of the valid values for the attribute.

(if_then_else test true-value false-value)

test specifies an attribute test, whose format is defined below. The value of this ex-

pression is true-value if test is true, otherwise it is false-value.

(cond [test1 value1 . . .] default)

The first operand of this expression is a vector containing an even number of expressions

and consisting of pairs of test and value expressions. The value of the cond expression

is that of the value corresponding to the first true test expression. If none of the test

expressions are true, the value of the cond expression is that of the default expression.

test expressions can have one of the following forms:

254 Using and Porting GNU CC

(const_int i)

This test is true if i is non-zero and false otherwise.

(not test)

(ior test1 test2)

(and test1 test2)

These tests are true if the indicated logical function is true.

(match_operand:m n pred constraints)

This test is true if operand n of the insn whose attribute value is being determined has

mode m (this part of the test is ignored if m is VOIDmode) and the function specified

by the string pred returns a non-zero value when passed operand n and mode m (this

part of the test is ignored if pred is the null string).

The constraints operand is ignored and should be the null string.

(le arith1 arith2)

(leu arith1 arith2)

(lt arith1 arith2)

(ltu arith1 arith2)

(gt arith1 arith2)

(gtu arith1 arith2)

(ge arith1 arith2)

(geu arith1 arith2)

(ne arith1 arith2)

(eq arith1 arith2)

These tests are true if the indicated comparison of the two arithmetic expressions is

true. Arithmetic expressions are formed with plus, minus, mult, div, mod, abs, neg,

and, ior, xor, not, lshift, ashift, lshiftrt, and ashiftrt expressions.

const_int and symbol_ref are always valid terms (see Section 13.15.5 [Insn Lengths],

page 258,for additional forms). symbol_ref is a string denoting a C expression that

yields an int when evaluated by the ‘get_attr_. . .’ routine. It should normally be a

global variable.

(eq_attr name value)

name is a string specifying the name of an attribute.

value is a string that is either a valid value for attribute name, a comma-separated list

of values, or ‘!’ followed by a value or list. If value does not begin with a ‘!’, this test

is true if the value of the name attribute of the current insn is in the list specified by

value. If value begins with a ‘!’, this test is true if the attribute’s value is not in the

specified list.

For example,

(eq_attr "type" "load,store")

Chapter 13: Machine Descriptions 255

is equivalent to

(ior (eq_attr "type" "load") (eq_attr "type" "store"))

If name specifies an attribute of ‘alternative’, it refers to the value of the compiler

variable which_alternative (see Section 13.5 [Output Statement], page 216) and the

values must be small integers. For example,

(eq_attr "alternative" "2,3")

is equivalent to

(ior (eq (symbol_ref "which_alternative") (const_int 2))
(eq (symbol_ref "which_alternative") (const_int 3)))

Note that, for most attributes, an eq_attr test is simplified in cases where the value

of the attribute being tested is known for all insns matching a particular pattern. This

is by far the most common case.

13.15.3 Assigning Attribute Values to Insns

The value assigned to an attribute of an insn is primarily determined by which pattern is matched

by that insn (or which define_peephole generated it). Every define_insn and define_peephole

can have an optional last argument to specify the values of attributes for matching insns. The value

of any attribute not specified in a particular insn is set to the default value for that attribute, as

specified in its define_attr. Extensive use of default values for attributes permits the specification

of the values for only one or two attributes in the definition of most insn patterns, as seen in the

example in the next section.

The optional last argument of define_insn and define_peephole is a vector of expressions,

each of which defines the value for a single attribute. The most general way of assigning an

attribute’s value is to use a set expression whose first operand is an attr expression giving the

name of the attribute being set. The second operand of the set is an attribute expression (see

Section 13.15.2 [Expressions], page 253) giving the value of the attribute.

When the attribute value depends on the ‘alternative’ attribute (i.e., which is the applicable

alternative in the constraint of the insn), the set_attr_alternative expression can be used. It

allows the specification of a vector of attribute expressions, one for each alternative.

When the generality of arbitrary attribute expressions is not required, the simpler set_attr

expression can be used, which allows specifying a string giving either a single attribute value or a

list of attribute values, one for each alternative.

256 Using and Porting GNU CC

The form of each of the above specifications is shown below. In each case, name is a string

specifying the attribute to be set.

(set_attr name value-string)

value-string is either a string giving the desired attribute value, or a string containing

a comma-separated list giving the values for succeeding alternatives. The number of

elements must match the number of alternatives in the constraint of the insn pattern.

Note that it may be useful to specify ‘*’ for some alternative, in which case the attribute

will assume its default value for insns matching that alternative.

(set_attr_alternative name [value1 value2 . . .])

Depending on the alternative of the insn, the value will be one of the specified values.

This is a shorthand for using a cond with tests on the ‘alternative’ attribute.

(set (attr name) value)

The first operand of this set must be the special RTL expression attr, whose sole

operand is a string giving the name of the attribute being set. value is the value of the

attribute.

The following shows three different ways of representing the same attribute value specification:

(set_attr "type" "load,store,arith")

(set_attr_alternative "type"
[(const_string "load") (const_string "store")
(const_string "arith")])

(set (attr "type")
(cond [(eq_attr "alternative" "1") (const_string "load")

(eq_attr "alternative" "2") (const_string "store")]
(const_string "arith")))

The define_asm_attributes expression provides a mechanism to specify the attributes as-

signed to insns produced from an asm statement. It has the form:

(define_asm_attributes [attr-sets])

where attr-sets is specified the same as for define_insn and define_peephole expressions.

Chapter 13: Machine Descriptions 257

These values will typically be the “worst case” attribute values. For example, they might indicate

that the condition code will be clobbered.

A specification for a length attribute is handled specially. To compute the length of an asm

insn, the length specified in the define_asm_attributes expression is multiplied by the number

of machine instructions specified in the asm statement, determined by counting the number of

semicolons and newlines in the string. Therefore, the value of the length attribute specified in a

define_asm_attributes should be the maximum possible length of a single machine instruction.

13.15.4 Example of Attribute Specifications

The judicious use of defaulting is important in the efficient use of insn attributes. Typically,

insns are divided into types and an attribute, customarily called type, is used to represent this

value. This attribute is normally used only to define the default value for other attributes. An

example will clarify this usage.

Assume we have a RISC machine with a condition code and in which only full-word operations

are performed in registers. Let us assume that we can divide all insns into loads, stores, (integer)

arithmetic operations, floating point operations, and branches.

Here we will concern ourselves with determining the effect of an insn on the condition code and

will limit ourselves to the following possible effects: The condition code can be set unpredictably

(clobbered), not be changed, be set to agree with the results of the operation, or only changed if

the item previously set into the condition code has been modified.

Here is part of a sample ‘md’ file for such a machine:

(define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))

(define_attr "cc" "clobber,unchanged,set,change0"
(cond [(eq_attr "type" "load")

(const_string "change0")
(eq_attr "type" "store,branch")

(const_string "unchanged")
(eq_attr "type" "arith")

(if_then_else (match_operand:SI 0 "" "")
(const_string "set")
(const_string "clobber"))]

(const_string "clobber")))

258 Using and Porting GNU CC

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r,r,m")

(match_operand:SI 1 "general_operand" "r,m,r"))]
""
"@
move %0,%1
load %0,%1
store %0,%1"

[(set_attr "type" "arith,load,store")])

Note that we assume in the above example that arithmetic operations performed on quantities

smaller than a machine word clobber the condition code since they will set the condition code to a

value corresponding to the full-word result.

13.15.5 Computing the Length of an Insn

For many machines, multiple types of branch instructions are provided, each for different length

branch displacements. In most cases, the assembler will choose the correct instruction to use. How-

ever, when the assembler cannot do so, GCC can when a special attribute, the ‘length’ attribute,

is defined. This attribute must be defined to have numeric values by specifying a null string in its

define_attr.

In the case of the ‘length’ attribute, two additional forms of arithmetic terms are allowed in

test expressions:

(match_dup n)

This refers to the address of operand n of the current insn, which must be a label_ref.

(pc) This refers to the address of the current insn. It might have been more consistent

with other usage to make this the address of the next insn but this would be confusing

because the length of the current insn is to be computed.

For normal insns, the length will be determined by value of the ‘length’ attribute. In the case of

addr_vec and addr_diff_vec insn patterns, the length will be computed as the number of vectors

multiplied by the size of each vector.

The following macros can be used to refine the length computation:

Chapter 13: Machine Descriptions 259

FIRST_INSN_ADDRESS

When the length insn attribute is used, this macro specifies the value to be assigned

to the address of the first insn in a function. If not specified, 0 is used.

ADJUST_INSN_LENGTH (insn, length)

If defined, modifies the length assigned to instruction insn as a function of the context

in which it is used. length is an lvalue that contains the initially computed length of

the insn and should be updated with the correct length of the insn. If updating is

required, insn must not be a varying-length insn.

This macro will normally not be required. A case in which it is required is the ROMP.

On this machine, the size of an addr_vec insn must be increased by two to compensate

for the fact that alignment may be required.

The routine that returns the value of the length attribute, get_attr_length, can be used by

the output routine to determine the form of the branch instruction to be written, as the example

below illustrates.

As an example of the specification of variable-length branches, consider the IBM 360. If we adopt

the convention that a register will be set to the starting address of a function, we can jump to labels

within 4K of the start using a four-byte instruction. Otherwise, we need a six-byte sequence to

load the address from memory and then branch to it.

On such a machine, a pattern for a branch instruction might be specified as follows:

(define_insn "jump"
[(set (pc)

(label_ref (match_operand 0 "" "")))]
""
"*

{
return (get_attr_length (insn) == 4

? \"b %l0\" : \"l r15,=a(%l0); br r15\");
}"
[(set (attr "length") (if_then_else (lt (match_dup 0) (const_int 4096))

(const_int 4)
(const_int 6)))])

260 Using and Porting GNU CC

13.15.6 Constant Attributes

A special form of define_attr, where the expression for the default value is a const expression,

indicates an attribute that is constant for a given run of the compiler. Constant attributes may be

used to specify which variety of processor is used. For example,

(define_attr "cpu" "m88100,m88110,m88000"
(const
(cond [(symbol_ref "TARGET_88100") (const_string "m88100")

(symbol_ref "TARGET_88110") (const_string "m88110")]
(const_string "m88000"))))

(define_attr "memory" "fast,slow"
(const
(if_then_else (symbol_ref "TARGET_FAST_MEM")

(const_string "fast")
(const_string "slow"))))

The routine generated for constant attributes has no parameters as it does not depend on any

particular insn. RTL expressions used to define the value of a constant attribute may use the

symbol_ref form, but may not use either the match_operand form or eq_attr forms involving

insn attributes.

13.15.7 Delay Slot Scheduling

The insn attribute mechanism can be used to specify the requirements for delay slots, if any,

on a target machine. An instruction is said to require a delay slot if some instructions that are

physically after the instruction are executed as if they were located before it. Classic examples are

branch and call instructions, which often execute the following instruction before the branch or call

is performed.

On some machines, conditional branch instructions can optionally annul instructions in the

delay slot. This means that the instruction will not be executed for certain branch outcomes. Both

instructions that annul if the branch is true and instructions that annul if the branch is false are

supported.

Delay slot scheduling differs from instruction scheduling in that determining whether an instruc-

tion needs a delay slot is dependent only on the type of instruction being generated, not on data

Chapter 13: Machine Descriptions 261

flow between the instructions. See the next section for a discussion of data-dependent instruction

scheduling.

The requirement of an insn needing one or more delay slots is indicated via the define_delay

expression. It has the following form:

(define_delay test
[delay-1 annul-true-1 annul-false-1
delay-2 annul-true-2 annul-false-2
. . .])

test is an attribute test that indicates whether this define_delay applies to a particular insn.

If so, the number of required delay slots is determined by the length of the vector specified as the

second argument. An insn placed in delay slot n must satisfy attribute test delay-n. annul-true-n is

an attribute test that specifies which insns may be annulled if the branch is true. Similarly, annul-

false-n specifies which insns in the delay slot may be annulled if the branch is false. If annulling is

not supported for that delay slot, (nil) should be coded.

For example, in the common case where branch and call insns require a single delay slot, which

may contain any insn other than a branch or call, the following would be placed in the ‘md’ file:

(define_delay (eq_attr "type" "branch,call")
[(eq_attr "type" "!branch,call") (nil) (nil)])

Multiple define_delay expressions may be specified. In this case, each such expression specifies

different delay slot requirements and there must be no insn for which tests in two define_delay

expressions are both true.

For example, if we have a machine that requires one delay slot for branches but two for calls,

no delay slot can contain a branch or call insn, and any valid insn in the delay slot for the branch

can be annulled if the branch is true, we might represent this as follows:

(define_delay (eq_attr "type" "branch")
[(eq_attr "type" "!branch,call") (eq_attr "type" "!branch,call") (nil)])

(define_delay (eq_attr "type" "call")
[(eq_attr "type" "!branch,call") (nil) (nil)
(eq_attr "type" "!branch,call") (nil) (nil)])

262 Using and Porting GNU CC

13.15.8 Specifying Function Units

On most RISC machines, there are instructions whose results are not available for a specific

number of cycles. Common cases are instructions that load data from memory. On many machines,

a pipeline stall will result if the data is referenced too soon after the load instruction.

In addition, many newer microprocessors have multiple function units, usually one for integer

and one for floating point, and often will incur pipeline stalls when a result that is needed is not

yet ready.

The descriptions in this section allow the specification of how much time must elapse between

the execution of an instruction and the time when its result is used. It also allows specification of

when the execution of an instruction will delay execution of similar instructions due to function

unit conflicts.

For the purposes of the specifications in this section, a machine is divided into function units,

each of which execute a specific class of instructions in first-in-first-out order. Function units that

accept one instruction each cycle and allow a result to be used in the succeeding instruction (usually

via forwarding) need not be specified. Classic RISC microprocessors will normally have a single

function unit, which we can call ‘memory’. The newer “superscalar” processors will often have

function units for floating point operations, usually at least a floating point adder and multiplier.

Each usage of a function units by a class of insns is specified with a define_function_unit

expression, which looks like this:

(define_function_unit name multiplicity simultaneity
test ready-delay issue-delay

[conflict-list])

name is a string giving the name of the function unit.

multiplicity is an integer specifying the number of identical units in the processor. If more than

one unit is specified, they will be scheduled independently. Only truly independent units should

be counted; a pipelined unit should be specified as a single unit. (The only common example of a

machine that has multiple function units for a single instruction class that are truly independent

and not pipelined are the two multiply and two increment units of the CDC 6600.)

Chapter 13: Machine Descriptions 263

simultaneity specifies the maximum number of insns that can be executing in each instance of

the function unit simultaneously or zero if the unit is pipelined and has no limit.

All define_function_unit definitions referring to function unit name must have the same

name and values for multiplicity and simultaneity.

test is an attribute test that selects the insns we are describing in this definition. Note that an

insn may use more than one function unit and a function unit may be specified in more than one

define_function_unit.

ready-delay is an integer that specifies the number of cycles after which the result of the in-

struction can be used without introducing any stalls.

issue-delay is an integer that specifies the number of cycles after the instruction matching the

test expression begins using this unit until a subsequent instruction can begin. A cost of N indicates

an N-1 cycle delay. A subsequent instruction may also be delayed if an earlier instruction has a

longer ready-delay value. This blocking effect is computed using the simultaneity, ready-delay,

issue-delay, and conflict-list terms. For a normal non-pipelined function unit, simultaneity is one,

the unit is taken to block for the ready-delay cycles of the executing insn, and smaller values of

issue-delay are ignored.

conflict-list is an optional list giving detailed conflict costs for this unit. If specified, it is a list of

condition test expressions to be applied to insns chosen to execute in name following the particular

insn matching test that is already executing in name. For each insn in the list, issue-delay specifies

the conflict cost; for insns not in the list, the cost is zero. If not specified, conflict-list defaults to

all instructions that use the function unit.

Typical uses of this vector are where a floating point function unit can pipeline either single-

or double-precision operations, but not both, or where a memory unit can pipeline loads, but not

stores, etc.

As an example, consider a classic RISC machine where the result of a load instruction is not

available for two cycles (a single “delay” instruction is required) and where only one load instruction

can be executed simultaneously. This would be specified as:

(define_function_unit "memory" 1 1 (eq_attr "type" "load") 2 0)

264 Using and Porting GNU CC

For the case of a floating point function unit that can pipeline either single or double precision,

but not both, the following could be specified:

(define_function_unit
"fp" 1 0 (eq_attr "type" "sp_fp") 4 4 [(eq_attr "type" "dp_fp")])

(define_function_unit
"fp" 1 0 (eq_attr "type" "dp_fp") 4 4 [(eq_attr "type" "sp_fp")])

Note: The scheduler attempts to avoid function unit conflicts and uses all the specifications in

the define_function_unit expression. It has recently come to our attention that these specifica-

tions may not allow modeling of some of the newer “superscalar” processors that have insns using

multiple pipelined units. These insns will cause a potential conflict for the second unit used during

their execution and there is no way of representing that conflict. We welcome any examples of how

function unit conflicts work in such processors and suggestions for their representation.

Chapter 14: Target Description Macros 265

14 Target Description Macros

In addition to the file ‘machine.md’, a machine description includes a C header file conventionally

given the name ‘machine.h’. This header file defines numerous macros that convey the information

about the target machine that does not fit into the scheme of the ‘.md’ file. The file ‘tm.h’ should

be a link to ‘machine.h’. The header file ‘config.h’ includes ‘tm.h’ and most compiler source files

include ‘config.h’.

14.1 Controlling the Compilation Driver, ‘gcc’

SWITCH_TAKES_ARG (char)

A C expression which determines whether the option ‘-char’ takes arguments. The

value should be the number of arguments that option takes–zero, for many options.

By default, this macro is defined to handle the standard options properly. You need

not define it unless you wish to add additional options which take arguments.

WORD_SWITCH_TAKES_ARG (name)

A C expression which determines whether the option ‘-name’ takes arguments. The

value should be the number of arguments that option takes–zero, for many options.

This macro rather than SWITCH_TAKES_ARG is used for multi-character option names.

By default, this macro is defined to handle the standard options properly. You need

not define it unless you wish to add additional options which take arguments.

SWITCHES_NEED_SPACES

A string-valued C expression which is nonempty if the linker needs a space between

the ‘-L’ or ‘-o’ option and its argument.

If this macro is not defined, the default value is 0.

CPP_SPEC A C string constant that tells the GNU CC driver program options to pass to CPP. It

can also specify how to translate options you give to GNU CC into options for GNU

CC to pass to the CPP.

Do not define this macro if it does not need to do anything.

SIGNED_CHAR_SPEC

A C string constant that tells the GNU CC driver program options to pass to CPP.

By default, this macro is defined to pass the option ‘-D__CHAR_UNSIGNED__’ to CPP if

char will be treated as unsigned char by cc1.

Do not define this macro unless you need to override the default definition.

266 Using and Porting GNU CC

CC1_SPEC A C string constant that tells the GNU CC driver program options to pass to cc1. It

can also specify how to translate options you give to GNU CC into options for GNU

CC to pass to the cc1.

Do not define this macro if it does not need to do anything.

CC1PLUS_SPEC

A C string constant that tells the GNU CC driver program options to pass to cc1plus.

It can also specify how to translate options you give to GNU CC into options for GNU

CC to pass to the cc1plus.

Do not define this macro if it does not need to do anything.

ASM_SPEC A C string constant that tells the GNU CC driver program options to pass to the

assembler. It can also specify how to translate options you give to GNU CC into

options for GNU CC to pass to the assembler. See the file ‘sun3.h’ for an example of

this.

Do not define this macro if it does not need to do anything.

ASM_FINAL_SPEC

A C string constant that tells the GNU CC driver program how to run any programs

which cleanup after the normal assembler. Normally, this is not needed. See the file

‘mips.h’ for an example of this.

Do not define this macro if it does not need to do anything.

LINK_SPEC

A C string constant that tells the GNU CC driver program options to pass to the

linker. It can also specify how to translate options you give to GNU CC into options

for GNU CC to pass to the linker.

Do not define this macro if it does not need to do anything.

LIB_SPEC Another C string constant used much like LINK_SPEC. The difference between the two

is that LIB_SPEC is used at the end of the command given to the linker.

If this macro is not defined, a default is provided that loads the standard C library

from the usual place. See ‘gcc.c’.

STARTFILE_SPEC

Another C string constant used much like LINK_SPEC. The difference between the two

is that STARTFILE_SPEC is used at the very beginning of the command given to the

linker.

If this macro is not defined, a default is provided that loads the standard C startup file

from the usual place. See ‘gcc.c’.

ENDFILE_SPEC

Another C string constant used much like LINK_SPEC. The difference between the two

is that ENDFILE_SPEC is used at the very end of the command given to the linker.

Do not define this macro if it does not need to do anything.

Chapter 14: Target Description Macros 267

LINK_LIBGCC_SPECIAL

Define this macro meaning that gcc should find the library ‘libgcc.a’ by hand, rather

than passing the argument ‘-lgcc’ to tell the linker to do the search.

RELATIVE_PREFIX_NOT_LINKDIR

Define this macro to tell gcc that it should only translate a ‘-B’ prefix into a ‘-L’ linker

option if the prefix indicates an absolute file name.

STANDARD_EXEC_PREFIX

Define this macro as a C string constant if you wish to override the standard choice

of ‘/usr/local/lib/gcc-lib/’ as the default prefix to try when searching for the

executable files of the compiler.

MD_EXEC_PREFIX

If defined, this macro is an additional prefix to try after STANDARD_EXEC_PREFIX.

MD_EXEC_PREFIX is not searched when the ‘-b’ option is used, or the compiler is built

as a cross compiler.

STANDARD_STARTFILE_PREFIX

Define this macro as a C string constant if you wish to override the standard choice of

‘/usr/local/lib/’ as the default prefix to try when searching for startup files such as

‘crt0.o’.

MD_STARTFILE_PREFIX

If defined, this macro supplies an additional prefix to try after the standard prefixes.

MD_EXEC_PREFIX is not searched when the ‘-b’ option is used, or when the compiler is

built as a cross compiler.

MD_STARTFILE_PREFIX_1

If defined, this macro supplies yet another prefix to try after the standard prefixes. It

is not searched when the ‘-b’ option is used, or when the compiler is built as a cross

compiler.

LOCAL_INCLUDE_DIR

Define this macro as a C string constant if you wish to override the standard choice

of ‘/usr/local/include’ as the default prefix to try when searching for local header

files. LOCAL_INCLUDE_DIR comes before SYSTEM_INCLUDE_DIR in the search order.

Cross compilers do not use this macro and do not search either ‘/usr/local/include’

or its replacement.

SYSTEM_INCLUDE_DIR

Define this macro as a C string constant if you wish to specify a system-specific directory

to search for header files before the standard directory. SYSTEM_INCLUDE_DIR comes

before STANDARD_INCLUDE_DIR in the search order.

Cross compilers do not use this macro and do not search the directory specified.

268 Using and Porting GNU CC

STANDARD_INCLUDE_DIR

Define this macro as a C string constant if you wish to override the standard choice of

‘/usr/include’ as the default prefix to try when searching for header files.

Cross compilers do not use this macro and do not search either ‘/usr/include’ or its

replacement.

INCLUDE_DEFAULTS

Define this macro if you wish to override the entire default search path for include

files. The default search path includes GPLUSPLUS_INCLUDE_DIR, GCC_INCLUDE_DIR,

LOCAL_INCLUDE_DIR, SYSTEM_INCLUDE_DIR, and STANDARD_INCLUDE_DIR. In addi-

tion, the macros GPLUSPLUS_INCLUDE_DIR and GCC_INCLUDE_DIR are defined auto-

matically by ‘Makefile’, and specify private search areas for GCC. The directory

GPLUSPLUS_INCLUDE_DIR is used only for C++ programs.

The definition should be an initializer for an array of structures. Each array element

should have two elements: the directory name (a string constant) and a flag for C++-

only directories. Mark the end of the array with a null element. For example, here is

the definition used for VMS:

#define INCLUDE_DEFAULTS \
{ \
{ "GNU_GXX_INCLUDE:", 1}, \
{ "GNU_CC_INCLUDE:", 0}, \
{ "SYS$SYSROOT:[SYSLIB.]", 0}, \
{ ".", 0}, \
{ 0, 0} \

}

Here is the order of prefixes tried for exec files:

1. Any prefixes specified by the user with ‘-B’.

2. The environment variable GCC_EXEC_PREFIX, if any.

3. The directories specified by the environment variable COMPILER_PATH.

4. The macro STANDARD_EXEC_PREFIX.

5. ‘/usr/lib/gcc/’.

6. The macro MD_EXEC_PREFIX, if any.

Here is the order of prefixes tried for startfiles:

1. Any prefixes specified by the user with ‘-B’.

Chapter 14: Target Description Macros 269

2. The environment variable GCC_EXEC_PREFIX, if any.

3. The directories specified by the environment variable LIBRARY_PATH.

4. The macro STANDARD_EXEC_PREFIX.

5. ‘/usr/lib/gcc/’.

6. The macro MD_EXEC_PREFIX, if any.

7. The macro MD_STARTFILE_PREFIX, if any.

8. The macro STANDARD_STARTFILE_PREFIX.

9. ‘/lib/’.

10. ‘/usr/lib/’.

14.2 Run-time Target Specification

CPP_PREDEFINES

Define this to be a string constant containing ‘-D’ options to define the predefined

macros that identify this machine and system. These macros will be predefined unless

the ‘-ansi’ option is specified.

In addition, a parallel set of macros are predefined, whose names are made by appending

‘__’ at the beginning and at the end. These ‘__’ macros are permitted by the ANSI

standard, so they are predefined regardless of whether ‘-ansi’ is specified.

For example, on the Sun, one can use the following value:

"-Dmc68000 -Dsun -Dunix"

The result is to define the macros __mc68000__, __sun__ and __unix__ uncondition-

ally, and the macros mc68000, sun and unix provided ‘-ansi’ is not specified.

STDC_VALUE

Define the value to be assigned to the built-in macro __STDC__. The default is the

value ‘1’.

extern int target_flags;

This declaration should be present.

TARGET_. . .

This series of macros is to allow compiler command arguments to enable or disable the

use of optional features of the target machine. For example, one machine description

serves both the 68000 and the 68020; a command argument tells the compiler whether

it should use 68020-only instructions or not. This command argument works by means

of a macro TARGET_68020 that tests a bit in target_flags.

Define a macro TARGET_featurename for each such option. Its definition should test a

bit in target_flags; for example:

270 Using and Porting GNU CC

#define TARGET_68020 (target_flags & 1)

One place where these macros are used is in the condition-expressions of instruction

patterns. Note how TARGET_68020 appears frequently in the 68000 machine description

file, ‘m68k.md’. Another place they are used is in the definitions of the other macros in

the ‘machine.h’ file.

TARGET_SWITCHES

This macro defines names of command options to set and clear bits in target_flags.

Its definition is an initializer with a subgrouping for each command option.

Each subgrouping contains a string constant, that defines the option name, and a

number, which contains the bits to set in target_flags. A negative number says to

clear bits instead; the negative of the number is which bits to clear. The actual option

name is made by appending ‘-m’ to the specified name.

One of the subgroupings should have a null string. The number in this grouping is the

default value for target_flags. Any target options act starting with that value.

Here is an example which defines ‘-m68000’ and ‘-m68020’ with opposite meanings, and

picks the latter as the default:

#define TARGET_SWITCHES \
{ { "68020", 1}, \

{ "68000", -1}, \
{ "", 1}}

TARGET_OPTIONS

This macro is similar to TARGET_SWITCHES but defines names of command options that

have values. Its definition is an initializer with a subgrouping for each command option.

Each subgrouping contains a string constant, that defines the fixed part of the option

name, and the address of a variable. The variable, type char *, is set to the variable

part of the given option if the fixed part matches. The actual option name is made by

appending ‘-m’ to the specified name.

Here is an example which defines ‘-mshort-data-number’. If the given option is

‘-mshort-data-512’, the variable m88k_short_data will be set to the string "512".

extern char *m88k_short_data;
#define TARGET_OPTIONS { { "short-data-", &m88k_short_data } }

TARGET_VERSION

This macro is a C statement to print on stderr a string describing the particular

machine description choice. Every machine description should define TARGET_VERSION.

For example:

#ifdef MOTOROLA
#define TARGET_VERSION fprintf (stderr, " (68k, Motorola syntax)");
#else
#define TARGET_VERSION fprintf (stderr, " (68k, MIT syntax)");

Chapter 14: Target Description Macros 271

#endif

OVERRIDE_OPTIONS

Sometimes certain combinations of command options do not make sense on a particular

target machine. You can define a macro OVERRIDE_OPTIONS to take account of this.

This macro, if defined, is executed once just after all the command options have been

parsed.

Don’t use this macro to turn on various extra optimizations for ‘-O’. That is what

OPTIMIZATION_OPTIONS is for.

OPTIMIZATION_OPTIONS (level)

Some machines may desire to change what optimizations are performed for various

optimization levels. This macro, if defined, is executed once just after the optimization

level is determined and before the remainder of the command options have been parsed.

Values set in this macro are used as the default values for the other command line

options.

level is the optimization level specified; 2 if -O2 is specified, 1 if -O is specified, and 0

if neither is specified.

Do not examine write_symbols in this macro! The debugging options are not

supposed to alter the generated code.

14.3 Storage Layout

Note that the definitions of the macros in this table which are sizes or alignments measured in

bits do not need to be constant. They can be C expressions that refer to static variables, such as

the target_flags. See Section 14.2 [Run-time Target], page 269.

BITS_BIG_ENDIAN

Define this macro to be the value 1 if the most significant bit in a byte has the lowest

number; otherwise define it to be the value zero. This means that bit-field instructions

count from the most significant bit. If the machine has no bit-field instructions, this

macro is irrelevant.

This macro does not affect the way structure fields are packed into bytes or words; that

is controlled by BYTES_BIG_ENDIAN.

BYTES_BIG_ENDIAN

Define this macro to be 1 if the most significant byte in a word has the lowest number.

WORDS_BIG_ENDIAN

Define this macro to be 1 if, in a multiword object, the most significant word has

the lowest number. This applies to both memory locations and registers; GNU CC

272 Using and Porting GNU CC

fundamentally assumes that the order of words in memory is the same as the order in

registers.

BITS_PER_UNIT

Number of bits in an addressable storage unit (byte); normally 8.

BITS_PER_WORD

Number of bits in a word; normally 32.

MAX_BITS_PER_WORD

Maximum number of bits in a word. If this is undefined, the default is BITS_PER_WORD.

Otherwise, it is the constant value that is the largest value that BITS_PER_WORD can

have at run-time.

UNITS_PER_WORD

Number of storage units in a word; normally 4.

POINTER_SIZE

Width of a pointer, in bits.

PROMOTE_MODE (m, unsignedp, type)

A macro to update m and unsignedp when an object whose type is type and which

has the specified mode and signedness is to be stored in a register. This macro is only

called when type is a scalar type.

On most RISC machines, which only have operations that operate on a full regis-

ter, define this macro to set m to word_mode if m is an integer mode narrower than

BITS_PER_WORD. In most cases, only integer modes should be widened because wider-

precision floating-point operations are usually more expensive than their narrower coun-

terparts.

For most machines, the macro definition does not change unsignedp. However, some

machines, have instructions that preferentially handle either signed or unsigned quani-

ties of certain modes. For example, on the DEC Alpha, 32-bit loads from memory

and 32-bit add instructions sign-extend the result to 64 bits. On such machines, set

unsignedp according to which kind of extension is more efficient.

Do not define this macro if it would never modify m.

PROMOTE_FUNCTION_ARGS

Define this macro if the promotion described by PROMOTE_MODE should also be done for

outgoing function arguments.

PROMOTE_FUNCTION_RETURN

Define this macro if the promotion described by PROMOTE_MODE should also be done for

the return value of functions.

If this macro is defined, FUNCTION_VALUE must perform the same promotions done by

PROMOTE_MODE.

Chapter 14: Target Description Macros 273

PARM_BOUNDARY

Normal alignment required for function parameters on the stack, in bits. All stack

parameters receive at least this much alignment regardless of data type. On most

machines, this is the same as the size of an integer.

STACK_BOUNDARY

Define this macro if you wish to preserve a certain alignment for the stack pointer. The

definition is a C expression for the desired alignment (measured in bits).

If PUSH_ROUNDING is not defined, the stack will always be aligned to the specified

boundary. If PUSH_ROUNDING is defined and specifies a less strict alignment than

STACK_BOUNDARY, the stack may be momentarily unaligned while pushing arguments.

FUNCTION_BOUNDARY

Alignment required for a function entry point, in bits.

BIGGEST_ALIGNMENT

Biggest alignment that any data type can require on this machine, in bits.

BIGGEST_FIELD_ALIGNMENT

Biggest alignment that any structure field can require on this machine, in bits. If

defined, this overrides BIGGEST_ALIGNMENT for structure fields only.

MAX_OFILE_ALIGNMENT

Biggest alignment supported by the object file format of this machine. Use this macro

to limit the alignment which can be specified using the __attribute__ ((aligned

(n))) construct. If not defined, the default value is BIGGEST_ALIGNMENT.

DATA_ALIGNMENT (type, basic-align)

If defined, a C expression to compute the alignment for a static variable. type is the

data type, and basic-align is the alignment that the object would ordinarily have. The

value of this macro is used instead of that alignment to align the object.

If this macro is not defined, then basic-align is used.

One use of this macro is to increase alignment of medium-size data to make it all fit

in fewer cache lines. Another is to cause character arrays to be word-aligned so that

strcpy calls that copy constants to character arrays can be done inline.

CONSTANT_ALIGNMENT (constant, basic-align)

If defined, a C expression to compute the alignment given to a constant that is being

placed in memory. constant is the constant and basic-align is the alignment that the

object would ordinarily have. The value of this macro is used instead of that alignment

to align the object.

If this macro is not defined, then basic-align is used.

The typical use of this macro is to increase alignment for string constants to be word

aligned so that strcpy calls that copy constants can be done inline.

274 Using and Porting GNU CC

EMPTY_FIELD_BOUNDARY

Alignment in bits to be given to a structure bit field that follows an empty field such

as int : 0;.

Note that PCC_BITFIELD_TYPE_MATTERS also affects the alignment that results from

an empty field.

STRUCTURE_SIZE_BOUNDARY

Number of bits which any structure or union’s size must be a multiple of. Each structure

or union’s size is rounded up to a multiple of this.

If you do not define this macro, the default is the same as BITS_PER_UNIT.

STRICT_ALIGNMENT

Define this macro to be the value 1 if instructions will fail to work if given data not on

the nominal alignment. If instructions will merely go slower in that case, define this

macro as 0.

PCC_BITFIELD_TYPE_MATTERS

Define this if you wish to imitate the way many other C compilers handle alignment of

bitfields and the structures that contain them.

The behavior is that the type written for a bitfield (int, short, or other integer type)

imposes an alignment for the entire structure, as if the structure really did contain an

ordinary field of that type. In addition, the bitfield is placed within the structure so

that it would fit within such a field, not crossing a boundary for it.

Thus, on most machines, a bitfield whose type is written as int would not cross a

four-byte boundary, and would force four-byte alignment for the whole structure. (The

alignment used may not be four bytes; it is controlled by the other alignment parame-

ters.)

If the macro is defined, its definition should be a C expression; a nonzero value for the

expression enables this behavior.

Note that if this macro is not defined, or its value is zero, some bitfields may cross

more than one alignment boundary. The compiler can support such references if there

are ‘insv’, ‘extv’, and ‘extzv’ insns that can directly reference memory.

The other known way of making bitfields work is to define STRUCTURE_SIZE_BOUNDARY

as large as BIGGEST_ALIGNMENT. Then every structure can be accessed with fullwords.

Unless the machine has bitfield instructions or you define STRUCTURE_SIZE_BOUNDARY

that way, you must define PCC_BITFIELD_TYPE_MATTERS to have a nonzero value.

If your aim is to make GNU CC use the same conventions for laying out bitfields as

are used by another compiler, here is how to investigate what the other compiler does.

Compile and run this program:

struct foo1

Chapter 14: Target Description Macros 275

{
char x;
char :0;
char y;

};

struct foo2
{
char x;
int :0;
char y;

};

main ()
{
printf ("Size of foo1 is %d\n", sizeof (struct foo1));
printf ("Size of foo2 is %d\n", sizeof (struct foo2));
exit (0);

}

If this prints 2 and 5, then the compiler’s behavior is what you would get from

PCC_BITFIELD_TYPE_MATTERS.

BITFIELD_NBYTES_LIMITED

Like PCC BITFIELD TYPE MATTERS except that its effect is limited to aligning a

bitfield within the structure.

ROUND_TYPE_SIZE (struct, size, align)

Define this macro as an expression for the overall size of a structure (given by struct as

a tree node) when the size computed from the fields is size and the alignment is align.

The default is to round size up to a multiple of align.

ROUND_TYPE_ALIGN (struct, computed, specified)

Define this macro as an expression for the alignment of a structure (given by struct as a

tree node) if the alignment computed in the usual way is computed and the alignment

explicitly specified was specified.

The default is to use specified if it is larger; otherwise, use the smaller of computed

and BIGGEST_ALIGNMENT

MAX_FIXED_MODE_SIZE

An integer expression for the size in bits of the largest integer machine mode that

should actually be used. All integer machine modes of this size or smaller can be

used for structures and unions with the appropriate sizes. If this macro is undefined,

GET_MODE_BITSIZE (DImode) is assumed.

276 Using and Porting GNU CC

CHECK_FLOAT_VALUE (mode, value)

A C statement to validate the value value (of type double) for modemode. This means

that you check whether value fits within the possible range of values for mode mode

on this target machine. The mode mode is always SFmode or DFmode.

If value is not valid, you should call error to print an error message and then assign

some valid value to value. Allowing an invalid value to go through the compiler can

produce incorrect assembler code which may even cause Unix assemblers to crash.

This macro need not be defined if there is no work for it to do.

TARGET_FLOAT_FORMAT

A code distinguishing the floating point format of the target machine. There are three

defined values:

IEEE_FLOAT_FORMAT

This code indicates IEEE floating point. It is the default; there is no need

to define this macro when the format is IEEE.

VAX_FLOAT_FORMAT

This code indicates the peculiar format used on the Vax.

UNKNOWN_FLOAT_FORMAT

This code indicates any other format.

The value of this macro is compared with HOST_FLOAT_FORMAT (see Chapter 15 [Config],

page 355) to determine whether the target machine has the same format as the host

machine. If any other formats are actually in use on supported machines, new codes

should be defined for them.

14.4 Layout of Source Language Data Types

These macros define the sizes and other characteristics of the standard basic data types used

in programs being compiled. Unlike the macros in the previous section, these apply to specific

features of C and related languages, rather than to fundamental aspects of storage layout.

INT_TYPE_SIZE

A C expression for the size in bits of the type int on the target machine. If you don’t

define this, the default is one word.

SHORT_TYPE_SIZE

A C expression for the size in bits of the type short on the target machine. If you

don’t define this, the default is half a word. (If this would be less than one storage

unit, it is rounded up to one unit.)

Chapter 14: Target Description Macros 277

LONG_TYPE_SIZE

A C expression for the size in bits of the type long on the target machine. If you don’t

define this, the default is one word.

LONG_LONG_TYPE_SIZE

A C expression for the size in bits of the type long long on the target machine. If you

don’t define this, the default is two words.

CHAR_TYPE_SIZE

A C expression for the size in bits of the type char on the target machine. If you don’t

define this, the default is one quarter of a word. (If this would be less than one storage

unit, it is rounded up to one unit.)

FLOAT_TYPE_SIZE

A C expression for the size in bits of the type float on the target machine. If you

don’t define this, the default is one word.

DOUBLE_TYPE_SIZE

A C expression for the size in bits of the type double on the target machine. If you

don’t define this, the default is two words.

LONG_DOUBLE_TYPE_SIZE

A C expression for the size in bits of the type long double on the target machine. If

you don’t define this, the default is two words.

DEFAULT_SIGNED_CHAR

An expression whose value is 1 or 0, according to whether the type char should be

signed or unsigned by default. The user can always override this default with the

options ‘-fsigned-char’ and ‘-funsigned-char’.

DEFAULT_SHORT_ENUMS

A C expression to determine whether to give an enum type only as many bytes as it

takes to represent the range of possible values of that type. A nonzero value means to

do that; a zero value means all enum types should be allocated like int.

If you don’t define the macro, the default is 0.

SIZE_TYPE

A C expression for a string describing the name of the data type to use for size values.

The typedef name size_t is defined using the contents of the string.

The string can contain more than one keyword. If so, separate them with spaces,

and write first any length keyword, then unsigned if appropriate, and finally int.

The string must exactly match one of the data type names defined in the function

init_decl_processing in the file ‘c-decl.c’. You may not omit int or change the

order—that would cause the compiler to crash on startup.

If you don’t define this macro, the default is "long unsigned int".

278 Using and Porting GNU CC

PTRDIFF_TYPE

A C expression for a string describing the name of the data type to use for the result of

subtracting two pointers. The typedef name ptrdiff_t is defined using the contents

of the string. See SIZE_TYPE above for more information.

If you don’t define this macro, the default is "long int".

WCHAR_TYPE

A C expression for a string describing the name of the data type to use for wide

characters. The typedef name wchar_t is defined using the contents of the string. See

SIZE_TYPE above for more information.

If you don’t define this macro, the default is "int".

WCHAR_TYPE_SIZE

A C expression for the size in bits of the data type for wide characters. This is used in

cpp, which cannot make use of WCHAR_TYPE.

OBJC_INT_SELECTORS

Define this macro if the type of Objective C selectors should be int.

If this macro is not defined, then selectors should have the type struct objc_selector

*.

OBJC_SELECTORS_WITHOUT_LABELS

Define this macro if the compiler can group all the selectors together into a vector and

use just one label at the beginning of the vector. Otherwise, the compiler must give

each selector its own assembler label.

On certain machines, it is important to have a separate label for each selector because

this enables the linker to eliminate duplicate selectors.

TARGET_BELL

A C constant expression for the integer value for escape sequence ‘\a’.

TARGET_BS

TARGET_TAB

TARGET_NEWLINE

C constant expressions for the integer values for escape sequences ‘\b’, ‘\t’ and ‘\n’.

TARGET_VT

TARGET_FF

TARGET_CR

C constant expressions for the integer values for escape sequences ‘\v’, ‘\f’ and ‘\r’.

Chapter 14: Target Description Macros 279

14.5 Register Usage

This section explains how to describe what registers the target machine has, and how (in general)

they can be used.

The description of which registers a specific instruction can use is done with register classes; see

Section 14.6 [Register Classes], page 285. For information on using registers to access a stack frame,

see Section 14.7.2 [Frame Registers], page 292. For passing values in registers, see Section 14.7.5

[Register Arguments], page 297. For returning values in registers, see Section 14.7.6 [Scalar Return],

page 300.

14.5.1 Basic Characteristics of Registers

FIRST_PSEUDO_REGISTER

Number of hardware registers known to the compiler. They receive numbers 0 through

FIRST_PSEUDO_REGISTER-1; thus, the first pseudo register’s number really is assigned

the number FIRST_PSEUDO_REGISTER.

FIXED_REGISTERS

An initializer that says which registers are used for fixed purposes all throughout the

compiled code and are therefore not available for general allocation. These would

include the stack pointer, the frame pointer (except on machines where that can be

used as a general register when no frame pointer is needed), the program counter

on machines where that is considered one of the addressable registers, and any other

numbered register with a standard use.

This information is expressed as a sequence of numbers, separated by commas and

surrounded by braces. The nth number is 1 if register n is fixed, 0 otherwise.

The table initialized from this macro, and the table initialized by the following

one, may be overridden at run time either automatically, by the actions of the

macro CONDITIONAL_REGISTER_USAGE, or by the user with the command options

‘-ffixed-reg’, ‘-fcall-used-reg’ and ‘-fcall-saved-reg’.

CALL_USED_REGISTERS

Like FIXED_REGISTERS but has 1 for each register that is clobbered (in general) by

function calls as well as for fixed registers. This macro therefore identifies the registers

that are not available for general allocation of values that must live across function

calls.

If a register has 0 in CALL_USED_REGISTERS, the compiler automatically saves it on

function entry and restores it on function exit, if the register is used within the function.

280 Using and Porting GNU CC

CONDITIONAL_REGISTER_USAGE

Zero or more C statements that may conditionally modify two variables fixed_regs

and call_used_regs (both of type char []) after they have been initialized from the

two preceding macros.

This is necessary in case the fixed or call-clobbered registers depend on target flags.

You need not define this macro if it has no work to do.

If the usage of an entire class of registers depends on the target flags, you may indicate

this to GCC by using this macro to modify fixed_regs and call_used_regs to 1 for

each of the registers in the classes which should not be used by GCC. Also define the

macro REG_CLASS_FROM_LETTER to return NO_REGS if it is called with a letter for a class

that shouldn’t be used.

(However, if this class is not included in GENERAL_REGS and all of the insn patterns

whose constraints permit this class are controlled by target switches, then GCC will

automatically avoid using these registers when the target switches are opposed to them.)

NON_SAVING_SETJMP

If this macro is defined and has a nonzero value, it means that setjmp and related func-

tions fail to save the registers, or that longjmp fails to restore them. To compensate,

the compiler avoids putting variables in registers in functions that use setjmp.

14.5.2 Order of Allocation of Registers

REG_ALLOC_ORDER

If defined, an initializer for a vector of integers, containing the numbers of hard registers

in the order in which GNU CC should prefer to use them (from most preferred to least).

If this macro is not defined, registers are used lowest numbered first (all else being

equal).

One use of this macro is on machines where the highest numbered registers must

always be saved and the save-multiple-registers instruction supports only sequences of

consecutive registers. On such machines, define REG_ALLOC_ORDER to be an initializer

that lists the highest numbered allocatable register first.

ORDER_REGS_FOR_LOCAL_ALLOC

A C statement (sans semicolon) to choose the order in which to allocate hard registers

for pseudo-registers local to a basic block.

Store the desired order of registers in the array reg_alloc_order. Element 0 should

be the register to allocate first; element 1, the next register; and so on.

The macro body should not assume anything about the contents of reg_alloc_order

before execution of the macro.

Chapter 14: Target Description Macros 281

On most machines, it is not necessary to define this macro.

14.5.3 How Values Fit in Registers

This section discusses the macros that describe which kinds of values (specifically, which machine

modes) each register can hold, and how many consecutive registers are needed for a given mode.

HARD_REGNO_NREGS (regno, mode)

A C expression for the number of consecutive hard registers, starting at register number

regno, required to hold a value of mode mode.

On a machine where all registers are exactly one word, a suitable definition of this

macro is

#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
/ UNITS_PER_WORD))

HARD_REGNO_MODE_OK (regno, mode)

A C expression that is nonzero if it is permissible to store a value of mode mode in hard

register number regno (or in several registers starting with that one). For a machine

where all registers are equivalent, a suitable definition is

#define HARD_REGNO_MODE_OK(REGNO, MODE) 1

It is not necessary for this macro to check for the numbers of fixed registers, because

the allocation mechanism considers them to be always occupied.

On some machines, double-precision values must be kept in even/odd register pairs.

The way to implement that is to define this macro to reject odd register numbers for

such modes.

The minimum requirement for a mode to be OK in a register is that the ‘movmode’

instruction pattern support moves between the register and any other hard register for

which the mode is OK; and that moving a value into the register and back out not

alter it.

Since the same instruction used to move SImode will work for all narrower integer

modes, it is not necessary on any machine for HARD_REGNO_MODE_OK to distinguish

between these modes, provided you define patterns ‘movhi’, etc., to take advantage

of this. This is useful because of the interaction between HARD_REGNO_MODE_OK and

MODES_TIEABLE_P; it is very desirable for all integer modes to be tieable.

Many machines have special registers for floating point arithmetic. Often people assume

that floating point machine modes are allowed only in floating point registers. This is

not true. Any registers that can hold integers can safely hold a floating point machine

282 Using and Porting GNU CC

mode, whether or not floating arithmetic can be done on it in those registers. Integer

move instructions can be used to move the values.

On some machines, though, the converse is true: fixed-point machine modes may not

go in floating registers. This is true if the floating registers normalize any value stored

in them, because storing a non-floating value there would garble it. In this case,

HARD_REGNO_MODE_OK should reject fixed-point machine modes in floating registers.

But if the floating registers do not automatically normalize, if you can store any bit

pattern in one and retrieve it unchanged without a trap, then any machine mode may

go in a floating register, so you can define this macro to say so.

On some machines, such as the Sparc and the Mips, we get better code by defining

HARD_REGNO_MODE_OK to forbid integers in floating registers, even though the hard-

ware is capable of handling them. This is because transferring values between floating

registers and general registers is so slow that it is better to keep the integer in memory.

The primary significance of special floating registers is rather that they are the registers

acceptable in floating point arithmetic instructions. However, this is of no concern

to HARD_REGNO_MODE_OK. You handle it by writing the proper constraints for those

instructions.

On some machines, the floating registers are especially slow to access, so that it is better

to store a value in a stack frame than in such a register if floating point arithmetic is

not being done. As long as the floating registers are not in class GENERAL_REGS, they

will not be used unless some pattern’s constraint asks for one.

MODES_TIEABLE_P (mode1, mode2)

A C expression that is nonzero if it is desirable to choose register allocation so as to

avoid move instructions between a value of mode mode1 and a value of mode mode2.

If HARD_REGNO_MODE_OK (r, mode1) and HARD_REGNO_MODE_OK (r, mode2) are ever

different for any r, then MODES_TIEABLE_P (mode1, mode2) must be zero.

14.5.4 Handling Leaf Functions

On some machines, a leaf function (i.e., one which makes no calls) can run more efficiently if it

does not make its own register window. Often this means it is required to receive its arguments in

the registers where they are passed by the caller, instead of the registers where they would normally

arrive.

The special treatment for leaf functions generally applies only when other conditions are met;

for example, often they may use only those registers for its own variables and temporaries. We

use the term “leaf function” to mean a function that is suitable for this special handling, so that

functions with no calls are not necessarily “leaf functions”.

Chapter 14: Target Description Macros 283

GNU CC assigns register numbers before it knows whether the function is suitable for leaf

function treatment. So it needs to renumber the registers in order to output a leaf function. The

following macros accomplish this.

LEAF_REGISTERS

A C initializer for a vector, indexed by hard register number, which contains 1 for a

register that is allowable in a candidate for leaf function treatment.

If leaf function treatment involves renumbering the registers, then the registers marked

here should be the ones before renumbering—those that GNU CC would ordinarily

allocate. The registers which will actually be used in the assembler code, after renum-

bering, should not be marked with 1 in this vector.

Define this macro only if the target machine offers a way to optimize the treatment of

leaf functions.

LEAF_REG_REMAP (regno)

A C expression whose value is the register number to which regno should be renum-

bered, when a function is treated as a leaf function.

If regno is a register number which should not appear in a leaf function before renum-

bering, then the expression should yield -1, which will cause the compiler to abort.

Define this macro only if the target machine offers a way to optimize the treatment of

leaf functions, and registers need to be renumbered to do this.

REG_LEAF_ALLOC_ORDER

If defined, an initializer for a vector of integers, containing the numbers of hard registers

in the order in which the GNU CC should prefer to use them (from most preferred to

least) in a leaf function. If this macro is not defined, REG ALLOC ORDER is used

for both non-leaf and leaf-functions.

Normally, it is necessary for FUNCTION_PROLOGUE and FUNCTION_EPILOGUE to treat leaf functions

specially. It can test the C variable leaf_function which is nonzero for leaf functions. (The

variable leaf_function is defined only if LEAF_REGISTERS is defined.)

14.5.5 Registers That Form a Stack

There are special features to handle computers where some of the “registers” form a stack, as

in the 80387 coprocessor for the 80386. Stack registers are normally written by pushing onto the

stack, and are numbered relative to the top of the stack.

284 Using and Porting GNU CC

Currently, GNU CC can only handle one group of stack-like registers, and they must be consec-

utively numbered.

STACK_REGS

Define this if the machine has any stack-like registers.

FIRST_STACK_REG

The number of the first stack-like register. This one is the top of the stack.

LAST_STACK_REG

The number of the last stack-like register. This one is the bottom of the stack.

14.5.6 Obsolete Macros for Controlling Register Usage

These features do not work very well. They exist because they used to be required to generate

correct code for the 80387 coprocessor of the 80386. They are no longer used by that machine

description and may be removed in a later version of the compiler. Don’t use them!

OVERLAPPING_REGNO_P (regno)

If defined, this is a C expression whose value is nonzero if hard register number regno is

an overlapping register. This means a hard register which overlaps a hard register with

a different number. (Such overlap is undesirable, but occasionally it allows a machine

to be supported which otherwise could not be.) This macro must return nonzero for all

the registers which overlap each other. GNU CC can use an overlapping register only

in certain limited ways. It can be used for allocation within a basic block, and may be

spilled for reloading; that is all.

If this macro is not defined, it means that none of the hard registers overlap each other.

This is the usual situation.

INSN_CLOBBERS_REGNO_P (insn, regno)

If defined, this is a C expression whose value should be nonzero if the insn insn has

the effect of mysteriously clobbering the contents of hard register number regno. By

“mysterious” we mean that the insn’s RTL expression doesn’t describe such an effect.

If this macro is not defined, it means that no insn clobbers registers mysteriously. This

is the usual situation; all else being equal, it is best for the RTL expression to show all

the activity.

PRESERVE_DEATH_INFO_REGNO_P (regno)

If defined, this is a C expression whose value is nonzero if accurate REG_DEAD notes are

needed for hard register number regno at the time of outputting the assembler code.

Chapter 14: Target Description Macros 285

When this is so, a few optimizations that take place after register allocation and could

invalidate the death notes are not done when this register is involved.

You would arrange to preserve death info for a register when some of the code in the

machine description which is executed to write the assembler code looks at the death

notes. This is necessary only when the actual hardware feature which GNU CC thinks

of as a register is not actually a register of the usual sort. (It might, for example, be a

hardware stack.)

If this macro is not defined, it means that no death notes need to be preserved. This

is the usual situation.

14.6 Register Classes

On many machines, the numbered registers are not all equivalent. For example, certain registers

may not be allowed for indexed addressing; certain registers may not be allowed in some instructions.

These machine restrictions are described to the compiler using register classes.

You define a number of register classes, giving each one a name and saying which of the registers

belong to it. Then you can specify register classes that are allowed as operands to particular

instruction patterns.

In general, each register will belong to several classes. In fact, one class must be named ALL_REGS

and contain all the registers. Another class must be named NO_REGS and contain no registers. Often

the union of two classes will be another class; however, this is not required.

One of the classes must be named GENERAL_REGS. There is nothing terribly special about the

name, but the operand constraint letters ‘r’ and ‘g’ specify this class. If GENERAL_REGS is the same

as ALL_REGS, just define it as a macro which expands to ALL_REGS.

Order the classes so that if class x is contained in class y then x has a lower class number than

y.

The way classes other than GENERAL_REGS are specified in operand constraints is through

machine-dependent operand constraint letters. You can define such letters to correspond to various

classes, then use them in operand constraints.

You should define a class for the union of two classes whenever some instruction allows both

classes. For example, if an instruction allows either a floating point (coprocessor) register or a

286 Using and Porting GNU CC

general register for a certain operand, you should define a class FLOAT_OR_GENERAL_REGS which

includes both of them. Otherwise you will get suboptimal code.

You must also specify certain redundant information about the register classes: for each class,

which classes contain it and which ones are contained in it; for each pair of classes, the largest class

contained in their union.

When a value occupying several consecutive registers is expected in a certain class, all the

registers used must belong to that class. Therefore, register classes cannot be used to enforce a

requirement for a register pair to start with an even-numbered register. The way to specify this

requirement is with HARD_REGNO_MODE_OK.

Register classes used for input-operands of bitwise-and or shift instructions have a special re-

quirement: each such class must have, for each fixed-point machine mode, a subclass whose registers

can transfer that mode to or from memory. For example, on some machines, the operations for

single-byte values (QImode) are limited to certain registers. When this is so, each register class that

is used in a bitwise-and or shift instruction must have a subclass consisting of registers from which

single-byte values can be loaded or stored. This is so that PREFERRED_RELOAD_CLASS can always

have a possible value to return.

enum reg_class

An enumeral type that must be defined with all the register class names as enumeral

values. NO_REGS must be first. ALL_REGS must be the last register class, followed by

one more enumeral value, LIM_REG_CLASSES, which is not a register class but rather

tells how many classes there are.

Each register class has a number, which is the value of casting the class name to type

int. The number serves as an index in many of the tables described below.

N_REG_CLASSES

The number of distinct register classes, defined as follows:

#define N_REG_CLASSES (int) LIM_REG_CLASSES

REG_CLASS_NAMES

An initializer containing the names of the register classes as C string constants. These

names are used in writing some of the debugging dumps.

REG_CLASS_CONTENTS

An initializer containing the contents of the register classes, as integers which are bit

masks. The nth integer specifies the contents of class n. The way the integer mask is

interpreted is that register r is in the class if mask & (1 << r) is 1.

Chapter 14: Target Description Macros 287

When the machine has more than 32 registers, an integer does not suffice. Then the

integers are replaced by sub-initializers, braced groupings containing several integers.

Each sub-initializer must be suitable as an initializer for the type HARD_REG_SET which

is defined in ‘hard-reg-set.h’.

REGNO_REG_CLASS (regno)

A C expression whose value is a register class containing hard register regno. In general

there is more than one such class; choose a class which is minimal, meaning that no

smaller class also contains the register.

BASE_REG_CLASS

A macro whose definition is the name of the class to which a valid base register must

belong. A base register is one used in an address which is the register value plus a

displacement.

INDEX_REG_CLASS

A macro whose definition is the name of the class to which a valid index register must

belong. An index register is one used in an address where its value is either multiplied

by a scale factor or added to another register (as well as added to a displacement).

REG_CLASS_FROM_LETTER (char)

A C expression which defines the machine-dependent operand constraint letters for reg-

ister classes. If char is such a letter, the value should be the register class corresponding

to it. Otherwise, the value should be NO_REGS. The register letter ‘r’, corresponding

to class GENERAL_REGS, will not be passed to this macro; you do not need to handle it.

REGNO_OK_FOR_BASE_P (num)

A C expression which is nonzero if register number num is suitable for use as a base

register in operand addresses. It may be either a suitable hard register or a pseudo

register that has been allocated such a hard register.

REGNO_OK_FOR_INDEX_P (num)

A C expression which is nonzero if register number num is suitable for use as an index

register in operand addresses. It may be either a suitable hard register or a pseudo

register that has been allocated such a hard register.

The difference between an index register and a base register is that the index register

may be scaled. If an address involves the sum of two registers, neither one of them

scaled, then either one may be labeled the “base” and the other the “index”; but

whichever labeling is used must fit the machine’s constraints of which registers may

serve in each capacity. The compiler will try both labelings, looking for one that is

valid, and will reload one or both registers only if neither labeling works.

288 Using and Porting GNU CC

PREFERRED_RELOAD_CLASS (x, class)

A C expression that places additional restrictions on the register class to use when it

is necessary to copy value x into a register in class class. The value is a register class;

perhaps class, or perhaps another, smaller class. On many machines, the definition

#define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS

is safe.

Sometimes returning a more restrictive class makes better code. For example, on the

68000, when x is an integer constant that is in range for a ‘moveq’ instruction, the

value of this macro is always DATA_REGS as long as class includes the data registers.

Requiring a data register guarantees that a ‘moveq’ will be used.

If x is a const_double, by returning NO_REGS you can force x into a memory constant.

This is useful on certain machines where immediate floating values cannot be loaded

into certain kinds of registers.

PREFERRED_OUTPUT_RELOAD_CLASS (x, class)

Like PREFERRED_RELOAD_CLASS, but for output reloads instead of input reloads. If you

don’t define this macro, the default is to use class, unchanged.

LIMIT_RELOAD_CLASS (mode, class)

A C expression that places additional restrictions on the register class to use when it is

necessary to be able to hold a value of mode mode in a reload register for which class

class would ordinarily be used.

Unlike PREFERRED_RELOAD_CLASS, this macro should be used when there are certain

modes that simply can’t go in certain reload classes.

The value is a register class; perhaps class, or perhaps another, smaller class.

Don’t define this macro unless the target machine has limitations which require the

macro to do something nontrivial.

SECONDARY_RELOAD_CLASS (class, mode, x)

SECONDARY_INPUT_RELOAD_CLASS (class, mode, x)

SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x)

Many machines have some registers that cannot be copied directly to or from memory

or even from other types of registers. An example is the ‘MQ’ register, which on most

machines, can only be copied to or from general registers, but not memory. Some

machines allow copying all registers to and from memory, but require a scratch register

for stores to some memory locations (e.g., those with symbolic address on the RT, and

those with certain symbolic address on the Sparc when compiling PIC). In some cases,

both an intermediate and a scratch register are required.

You should define these macros to indicate to the reload phase that it may need to

allocate at least one register for a reload in addition to the register to contain the data.

Specifically, if copying x to a register class in mode requires an intermediate register,

Chapter 14: Target Description Macros 289

you should define SECONDARY_INPUT_RELOAD_CLASS to return the largest register class

all of whose registers can be used as intermediate registers or scratch registers.

If copying a register class in mode to x requires an intermediate or scratch register,

you should define SECONDARY_OUTPUT_RELOAD_CLASS to return the largest register class

required. If the requirements for input and output reloads are the same, the macro

SECONDARY_RELOAD_CLASS should be used instead of defining both macros identically.

The values returned by these macros are often GENERAL_REGS. Return NO_REGS if no

spare register is needed; i.e., if x can be directly copied to or from a register of class in

mode without requiring a scratch register. Do not define this macro if it would always

return NO_REGS.

If a scratch register is required (either with or without an intermediate register),

you should define patterns for ‘reload_inm’ or ‘reload_outm’, as required (see Sec-

tion 13.7 [Standard Names], page 226. These patterns, which will normally be imple-

mented with a define_expand, should be similar to the ‘movm’ patterns, except that

operand 2 is the scratch register.

Define constraints for the reload register and scratch register that contain a single

register class. If the original reload register (whose class is class) can meet the constraint

given in the pattern, the value returned by these macros is used for the class of the

scratch register. Otherwise, two additional reload registers are required. Their classes

are obtained from the constraints in the insn pattern.

x might be a pseudo-register or a subreg of a pseudo-register, which could either be

in a hard register or in memory. Use true_regnum to find out; it will return -1 if the

pseudo is in memory and the hard register number if it is in a register.

These macros should not be used in the case where a particular class of registers can

only be copied to memory and not to another class of registers. In that case, secondary

reload registers are not needed and would not be helpful. Instead, a stack location must

be used to perform the copy and the movm pattern should use memory as a intermediate

storage. This case often occurs between floating-point and general registers.

SECONDARY_MEMORY_NEEDED (class1, class2, m)

Certain machines have the property that some registers cannot be copied to some

other registers without using memory. Define this macro on those machines to be a C

expression that is non-zero if objects of modem in registers of class1 can only be copied

to registers of class class2 by storing a register of class1 into memory and loading that

memory location into a register of class2.

Do not define this macro if its value would always be zero.

SMALL_REGISTER_CLASSES

Normally the compiler will avoid choosing spill registers from registers that have been

explicitly mentioned in the rtl (these registers are normally those used to pass parame-

290 Using and Porting GNU CC

ters and return values). However, some machines have so few registers of certain classes

that there would not be enough registers to use as spill registers if this were done.

On those machines, you should define SMALL_REGISTER_CLASSES. When it is defined,

the compiler allows registers explicitly used in the rtl to be used as spill registers but

prevents the compiler from extending the lifetime of these registers.

Defining this macro is always safe, but unnecessarily defining this macro will reduce

the amount of optimizations that can be performed in some cases. If this macro is not

defined but needs to be, the compiler will run out of reload registers and print a fatal

error message.

For most machines, this macro should not be defined.

CLASS_MAX_NREGS (class, mode)

A C expression for the maximum number of consecutive registers of class class needed

to hold a value of mode mode.

This is closely related to the macro HARD_REGNO_NREGS. In fact, the value of the macro

CLASS_MAX_NREGS (class, mode) should be the maximum value of HARD_REGNO_NREGS

(regno, mode) for all regno values in the class class.

This macro helps control the handling of multiple-word values in the reload pass.

Three other special macros describe which operands fit which constraint letters.

CONST_OK_FOR_LETTER_P (value, c)

A C expression that defines the machine-dependent operand constraint letters that

specify particular ranges of integer values. If c is one of those letters, the expression

should check that value, an integer, is in the appropriate range and return 1 if so, 0

otherwise. If c is not one of those letters, the value should be 0 regardless of value.

CONST_DOUBLE_OK_FOR_LETTER_P (value, c)

A C expression that defines the machine-dependent operand constraint letters that

specify particular ranges of const_double values.

If c is one of those letters, the expression should check that value, an RTX of code

const_double, is in the appropriate range and return 1 if so, 0 otherwise. If c is not

one of those letters, the value should be 0 regardless of value.

const_double is used for all floating-point constants and for DImode fixed-point con-

stants. A given letter can accept either or both kinds of values. It can use GET_MODE

to distinguish between these kinds.

EXTRA_CONSTRAINT (value, c)

A C expression that defines the optional machine-dependent constraint letters that

can be used to segregate specific types of operands, usually memory references, for

Chapter 14: Target Description Macros 291

the target machine. Normally this macro will not be defined. If it is required for a

particular target machine, it should return 1 if value corresponds to the operand type

represented by the constraint letter c. If c is not defined as an extra constraint, the

value returned should be 0 regardless of value.

For example, on the ROMP, load instructions cannot have their output in r0 if the

memory reference contains a symbolic address. Constraint letter ‘Q’ is defined as repre-

senting a memory address that does not contain a symbolic address. An alternative is

specified with a ‘Q’ constraint on the input and ‘r’ on the output. The next alternative

specifies ‘m’ on the input and a register class that does not include r0 on the output.

14.7 Describing Stack Layout and Calling Conventions

14.7.1 Basic Stack Layout

STACK_GROWS_DOWNWARD

Define this macro if pushing a word onto the stack moves the stack pointer to a smaller

address.

When we say, “define this macro if . . .,” it means that the compiler checks this macro

only with #ifdef so the precise definition used does not matter.

FRAME_GROWS_DOWNWARD

Define this macro if the addresses of local variable slots are at negative offsets from the

frame pointer.

ARGS_GROW_DOWNWARD

Define this macro if successive arguments to a function occupy decreasing addresses on

the stack.

STARTING_FRAME_OFFSET

Offset from the frame pointer to the first local variable slot to be allocated.

If FRAME_GROWS_DOWNWARD, the next slot’s offset is found by subtracting the length

of the first slot from STARTING_FRAME_OFFSET. Otherwise, it is found by adding the

length of the first slot to the value STARTING_FRAME_OFFSET.

STACK_POINTER_OFFSET

Offset from the stack pointer register to the first location at which outgoing arguments

are placed. If not specified, the default value of zero is used. This is the proper value

for most machines.

If ARGS_GROW_DOWNWARD, this is the offset to the location above the first location at

which outgoing arguments are placed.

292 Using and Porting GNU CC

FIRST_PARM_OFFSET (fundecl)

Offset from the argument pointer register to the first argument’s address. On some

machines it may depend on the data type of the function.

If ARGS_GROW_DOWNWARD, this is the offset to the location above the first argument’s

address.

STACK_DYNAMIC_OFFSET (fundecl)

Offset from the stack pointer register to an item dynamically allocated on the stack,

e.g., by alloca.

The default value for this macro is STACK_POINTER_OFFSET plus the length of the

outgoing arguments. The default is correct for most machines. See ‘function.c’ for

details.

DYNAMIC_CHAIN_ADDRESS (frameaddr)

A C expression whose value is RTL representing the address in a stack frame where the

pointer to the caller’s frame is stored. Assume that frameaddr is an RTL expression

for the address of the stack frame itself.

If you don’t define this macro, the default is to return the value of frameaddr—that is,

the stack frame address is also the address of the stack word that points to the previous

frame.

14.7.2 Registers That Address the Stack Frame

STACK_POINTER_REGNUM

The register number of the stack pointer register, which must also be a fixed register

according to FIXED_REGISTERS. On most machines, the hardware determines which

register this is.

FRAME_POINTER_REGNUM

The register number of the frame pointer register, which is used to access automatic

variables in the stack frame. On some machines, the hardware determines which register

this is. On other machines, you can choose any register you wish for this purpose.

ARG_POINTER_REGNUM

The register number of the arg pointer register, which is used to access the function’s

argument list. On some machines, this is the same as the frame pointer register. On

some machines, the hardware determines which register this is. On other machines,

you can choose any register you wish for this purpose. If this is not the same register

as the frame pointer register, then you must mark it as a fixed register according to

FIXED_REGISTERS, or arrange to be able to eliminate it (see Section 14.7.3 [Elimination],

page 293).

Chapter 14: Target Description Macros 293

STATIC_CHAIN_REGNUM

STATIC_CHAIN_INCOMING_REGNUM

Register numbers used for passing a function’s static chain pointer. If register windows

are used, STATIC_CHAIN_INCOMING_REGNUM is the register number as seen by the called

function, while STATIC_CHAIN_REGNUM is the register number as seen by the calling

function. If these registers are the same, STATIC_CHAIN_INCOMING_REGNUM need not

be defined.

The static chain register need not be a fixed register.

If the static chain is passed in memory, these macros should not be defined; instead,

the next two macros should be defined.

STATIC_CHAIN

STATIC_CHAIN_INCOMING

If the static chain is passed in memory, these macros provide rtx giving mem expressions

that denote where they are stored. STATIC_CHAIN and STATIC_CHAIN_INCOMING give

the locations as seen by the calling and called functions, respectively. Often the former

will be at an offset from the stack pointer and the latter at an offset from the frame

pointer.

The variables stack_pointer_rtx, frame_pointer_rtx, and arg_pointer_rtx will

have been initialized prior to the use of these macros and should be used to refer to

those items.

If the static chain is passed in a register, the two previous macros should be defined

instead.

14.7.3 Eliminating Frame Pointer and Arg Pointer

FRAME_POINTER_REQUIRED

A C expression which is nonzero if a function must have and use a frame pointer. This

expression is evaluated in the reload pass. If its value is nonzero the function will have

a frame pointer.

The expression can in principle examine the current function and decide according to

the facts, but on most machines the constant 0 or the constant 1 suffices. Use 0 when

the machine allows code to be generated with no frame pointer, and doing so saves

some time or space. Use 1 when there is no possible advantage to avoiding a frame

pointer.

In certain cases, the compiler does not know how to produce valid code without a frame

pointer. The compiler recognizes those cases and automatically gives the function a

frame pointer regardless of what FRAME_POINTER_REQUIRED says. You don’t need to

worry about them.

294 Using and Porting GNU CC

In a function that does not require a frame pointer, the frame pointer register can be al-

located for ordinary usage, unless you mark it as a fixed register. See FIXED_REGISTERS

for more information.

This macro is ignored and need not be defined if ELIMINABLE_REGS is defined.

INITIAL_FRAME_POINTER_OFFSET (depth-var)

A C statement to store in the variable depth-var the difference between the frame

pointer and the stack pointer values immediately after the function prologue. The

value would be computed from information such as the result of get_frame_size ()

and the tables of registers regs_ever_live and call_used_regs.

If ELIMINABLE_REGS is defined, this macro will be not be used and need not be defined.

Otherwise, it must be defined even if FRAME_POINTER_REQUIRED is defined to always

be true; in that case, you may set depth-var to anything.

ELIMINABLE_REGS

If defined, this macro specifies a table of register pairs used to eliminate unneeded

registers that point into the stack frame. If it is not defined, the only elimination

attempted by the compiler is to replace references to the frame pointer with references

to the stack pointer.

The definition of this macro is a list of structure initializations, each of which specifies

an original and replacement register.

On some machines, the position of the argument pointer is not known until the com-

pilation is completed. In such a case, a separate hard register must be used for the

argument pointer. This register can be eliminated by replacing it with either the frame

pointer or the argument pointer, depending on whether or not the frame pointer has

been eliminated.

In this case, you might specify:

#define ELIMINABLE_REGS \
{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}

Note that the elimination of the argument pointer with the stack pointer is specified

first since that is the preferred elimination.

CAN_ELIMINATE (from-reg, to-reg)

A C expression that returns non-zero if the compiler is allowed to try to replace register

number from-reg with register number to-reg. This macro need only be defined if

ELIMINABLE_REGS is defined, and will usually be the constant 1, since most of the cases

preventing register elimination are things that the compiler already knows about.

Chapter 14: Target Description Macros 295

INITIAL_ELIMINATION_OFFSET (from-reg, to-reg, offset-var)

This macro is similar to INITIAL_FRAME_POINTER_OFFSET. It specifies the initial

difference between the specified pair of registers. This macro must be defined if

ELIMINABLE_REGS is defined.

LONGJMP_RESTORE_FROM_STACK

Define this macro if the longjmp function restores registers from the stack frames,

rather than from those saved specifically by setjmp. Certain quantities must not be

kept in registers across a call to setjmp on such machines.

14.7.4 Passing Function Arguments on the Stack

The macros in this section control how arguments are passed on the stack. See the following

section for other macros that control passing certain arguments in registers.

PROMOTE_PROTOTYPES

Define this macro if an argument declared as char or short in a prototype should

actually be passed as an int. In addition to avoiding errors in certain cases of mismatch,

it also makes for better code on certain machines.

PUSH_ROUNDING (npushed)

A C expression that is the number of bytes actually pushed onto the stack when an

instruction attempts to push npushed bytes.

If the target machine does not have a push instruction, do not define this macro. That

directs GNU CC to use an alternate strategy: to allocate the entire argument block

and then store the arguments into it.

On some machines, the definition

#define PUSH_ROUNDING(BYTES) (BYTES)

will suffice. But on other machines, instructions that appear to push one byte actually

push two bytes in an attempt to maintain alignment. Then the definition should be

#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)

ACCUMULATE_OUTGOING_ARGS

If defined, the maximum amount of space required for outgoing arguments will be

computed and placed into the variable current_function_outgoing_args_size. No

space will be pushed onto the stack for each call; instead, the function prologue should

increase the stack frame size by this amount.

It is not proper to define both PUSH_ROUNDING and ACCUMULATE_OUTGOING_ARGS.

296 Using and Porting GNU CC

REG_PARM_STACK_SPACE (fndecl)

Define this macro if functions should assume that stack space has been allocated for

arguments even when their values are passed in registers.

The value of this macro is the size, in bytes, of the area reserved for arguments passed

in registers for the function represented by fndecl.

This space can either be allocated by the caller or be a part of the machine-dependent

stack frame: OUTGOING_REG_PARM_STACK_SPACE says which.

MAYBE_REG_PARM_STACK_SPACE

FINAL_REG_PARM_STACK_SPACE (const size, var size)

Define these macros in addition to the one above if functions might allocate stack

space for arguments even when their values are passed in registers. These should be

used when the stack space allocated for arguments in registers is not a simple constant

independent of the function declaration.

The value of the first macro is the size, in bytes, of the area that we should initially

assume would be reserved for arguments passed in registers.

The value of the second macro is the actual size, in bytes, of the area that will be

reserved for arguments passed in registers. This takes two arguments: an integer

representing the number of bytes of fixed sized arguments on the stack, and a tree

representing the number of bytes of variable sized arguments on the stack.

When these macros are defined, REG_PARM_STACK_SPACE will only be called for libcall

functions, the current function, or for a function being called when it is known that

such stack space must be allocated. In each case this value can be easily computed.

When deciding whether a called function needs such stack space, and how much space

to reserve, GNU CC uses these two macros instead of REG_PARM_STACK_SPACE.

OUTGOING_REG_PARM_STACK_SPACE

Define this if it is the responsibility of the caller to allocate the area reserved for

arguments passed in registers.

If ACCUMULATE_OUTGOING_ARGS is defined, this macro controls whether the space for

these arguments counts in the value of current_function_outgoing_args_size.

STACK_PARMS_IN_REG_PARM_AREA

Define this macro if REG_PARM_STACK_SPACE is defined but stack parameters don’t skip

the area specified by REG_PARM_STACK_SPACE.

Normally, when a parameter is not passed in registers, it is placed on the stack beyond

the REG_PARM_STACK_SPACE area. Defining this macro suppresses this behavior and

causes the parameter to be passed on the stack in its natural location.

Chapter 14: Target Description Macros 297

RETURN_POPS_ARGS (funtype, stack-size)

A C expression that should indicate the number of bytes of its own arguments that a

function pops on returning, or 0 if the function pops no arguments and the caller must

therefore pop them all after the function returns.

funtype is a C variable whose value is a tree node that describes the function in question.

Normally it is a node of type FUNCTION_TYPE that describes the data type of the

function. From this it is possible to obtain the data types of the value and arguments

(if known).

When a call to a library function is being considered, funtype will contain an identifier

node for the library function. Thus, if you need to distinguish among various library

functions, you can do so by their names. Note that “library function” in this context

means a function used to perform arithmetic, whose name is known specially in the

compiler and was not mentioned in the C code being compiled.

stack-size is the number of bytes of arguments passed on the stack. If a variable number

of bytes is passed, it is zero, and argument popping will always be the responsibility of

the calling function.

On the Vax, all functions always pop their arguments, so the definition of this macro is

stack-size. On the 68000, using the standard calling convention, no functions pop their

arguments, so the value of the macro is always 0 in this case. But an alternative calling

convention is available in which functions that take a fixed number of arguments pop

them but other functions (such as printf) pop nothing (the caller pops all). When

this convention is in use, funtype is examined to determine whether a function takes a

fixed number of arguments.

14.7.5 Passing Arguments in Registers

This section describes the macros which let you control how various types of arguments are

passed in registers or how they are arranged in the stack.

FUNCTION_ARG (cum, mode, type, named)

A C expression that controls whether a function argument is passed in a register, and

which register.

The arguments are cum, which summarizes all the previous arguments; mode, the

machine mode of the argument; type, the data type of the argument as a tree node or

0 if that is not known (which happens for C support library functions); and named,

which is 1 for an ordinary argument and 0 for nameless arguments that correspond to

‘. . .’ in the called function’s prototype.

298 Using and Porting GNU CC

The value of the expression should either be a reg RTX for the hard register in which

to pass the argument, or zero to pass the argument on the stack.

For machines like the Vax and 68000, where normally all arguments are pushed, zero

suffices as a definition.

The usual way to make the ANSI library ‘stdarg.h’ work on a machine where some

arguments are usually passed in registers, is to cause nameless arguments to be passed

on the stack instead. This is done by making FUNCTION_ARG return 0 whenever named

is 0.

You may use the macro MUST_PASS_IN_STACK (mode, type) in the definition of this

macro to determine if this argument is of a type that must be passed in the stack. If

REG_PARM_STACK_SPACE is not defined and FUNCTION_ARG returns non-zero for such an

argument, the compiler will abort. If REG_PARM_STACK_SPACE is defined, the argument

will be computed in the stack and then loaded into a register.

FUNCTION_INCOMING_ARG (cum, mode, type, named)

Define this macro if the target machine has “register windows”, so that the register in

which a function sees an arguments is not necessarily the same as the one in which the

caller passed the argument.

For such machines, FUNCTION_ARG computes the register in which the caller passes the

value, and FUNCTION_INCOMING_ARG should be defined in a similar fashion to tell the

function being called where the arguments will arrive.

If FUNCTION_INCOMING_ARG is not defined, FUNCTION_ARG serves both purposes.

FUNCTION_ARG_PARTIAL_NREGS (cum, mode, type, named)

A C expression for the number of words, at the beginning of an argument, must be put

in registers. The value must be zero for arguments that are passed entirely in registers

or that are entirely pushed on the stack.

On some machines, certain arguments must be passed partially in registers and partially

in memory. On these machines, typically the first n words of arguments are passed in

registers, and the rest on the stack. If a multi-word argument (a double or a structure)

crosses that boundary, its first few words must be passed in registers and the rest must

be pushed. This macro tells the compiler when this occurs, and how many of the words

should go in registers.

FUNCTION_ARG for these arguments should return the first register to be used by the

caller for this argument; likewise FUNCTION_INCOMING_ARG, for the called function.

FUNCTION_ARG_PASS_BY_REFERENCE (cum, mode, type, named)

A C expression that indicates when an argument must be passed by reference. If

nonzero for an argument, a copy of that argument is made in memory and a pointer

to the argument is passed instead of the argument itself. The pointer is passed in

whatever way is appropriate for passing a pointer to that type.

Chapter 14: Target Description Macros 299

On machines where REG_PARM_STACK_SPACE is not defined, a suitable definition of this

macro might be

#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
MUST_PASS_IN_STACK (MODE, TYPE)

CUMULATIVE_ARGS

A C type for declaring a variable that is used as the first argument of FUNCTION_ARG

and other related values. For some target machines, the type int suffices and can hold

the number of bytes of argument so far.

There is no need to record in CUMULATIVE_ARGS anything about the arguments that

have been passed on the stack. The compiler has other variables to keep track of that.

For target machines on which all arguments are passed on the stack, there is no need

to store anything in CUMULATIVE_ARGS; however, the data structure must exist and

should not be empty, so use int.

INIT_CUMULATIVE_ARGS (cum, fntype, libname)

A C statement (sans semicolon) for initializing the variable cum for the state at the

beginning of the argument list. The variable has type CUMULATIVE_ARGS. The value of

fntype is the tree node for the data type of the function which will receive the args, or

0 if the args are to a compiler support library function.

When processing a call to a compiler support library function, libname identifies which

one. It is a symbol_ref rtx which contains the name of the function, as a string.

libname is 0 when an ordinary C function call is being processed. Thus, each time this

macro is called, either libname or fntype is nonzero, but never both of them at once.

INIT_CUMULATIVE_INCOMING_ARGS (cum, fntype, libname)

Like INIT_CUMULATIVE_ARGS but overrides it for the purposes of finding the arguments

for the function being compiled. If this macro is undefined, INIT_CUMULATIVE_ARGS is

used instead.

The argument libname exists for symmetry with INIT_CUMULATIVE_ARGS. The value

passed for libname is always 0, since library routines with special calling conventions

are never compiled with GNU CC.

FUNCTION_ARG_ADVANCE (cum, mode, type, named)

A C statement (sans semicolon) to update the summarizer variable cum to advance

past an argument in the argument list. The values mode, type and named describe that

argument. Once this is done, the variable cum is suitable for analyzing the following

argument with FUNCTION_ARG, etc.

This macro need not do anything if the argument in question was passed on the stack.

The compiler knows how to track the amount of stack space used for arguments without

any special help.

300 Using and Porting GNU CC

FUNCTION_ARG_PADDING (mode, type)

If defined, a C expression which determines whether, and in which direction, to pad out

an argument with extra space. The value should be of type enum direction: either

upward to pad above the argument, downward to pad below, or none to inhibit padding.

This macro does not control the amount of padding; that is always just enough to reach

the next multiple of FUNCTION_ARG_BOUNDARY.

This macro has a default definition which is right for most systems. For little-endian

machines, the default is to pad upward. For big-endian machines, the default is to pad

downward for an argument of constant size shorter than an int, and upward otherwise.

FUNCTION_ARG_BOUNDARY (mode, type)

If defined, a C expression that gives the alignment boundary, in bits, of an argument

with the specified mode and type. If it is not defined, PARM_BOUNDARY is used for all

arguments.

FUNCTION_ARG_REGNO_P (regno)

A C expression that is nonzero if regno is the number of a hard register in which function

arguments are sometimes passed. This does not include implicit arguments such as the

static chain and the structure-value address. On many machines, no registers can be

used for this purpose since all function arguments are pushed on the stack.

14.7.6 How Scalar Function Values Are Returned

This section discusses the macros that control returning scalars as values—values that can fit

in registers.

TRADITIONAL_RETURN_FLOAT

Define this macro if ‘-traditional’ should not cause functions declared to return

float to convert the value to double.

FUNCTION_VALUE (valtype, func)

A C expression to create an RTX representing the place where a function returns a

value of data type valtype. valtype is a tree node representing a data type. Write

TYPE_MODE (valtype) to get the machine mode used to represent that type. On many

machines, only the mode is relevant. (Actually, on most machines, scalar values are

returned in the same place regardless of mode).

If PROMOTE_FUNCTION_RETURN is defined, you must apply the same promotion rules

specified in PROMOTE_MODE if valtype is a scalar type.

Chapter 14: Target Description Macros 301

If the precise function being called is known, func is a tree node (FUNCTION_DECL) for

it; otherwise, func is a null pointer. This makes it possible to use a different value-

returning convention for specific functions when all their calls are known.

FUNCTION_VALUE is not used for return vales with aggregate data types, because these

are returned in another way. See STRUCT_VALUE_REGNUM and related macros, below.

FUNCTION_OUTGOING_VALUE (valtype, func)

Define this macro if the target machine has “register windows” so that the register in

which a function returns its value is not the same as the one in which the caller sees

the value.

For such machines, FUNCTION_VALUE computes the register in which the caller will see

the value, and FUNCTION_OUTGOING_VALUE should be defined in a similar fashion to tell

the function where to put the value.

If FUNCTION_OUTGOING_VALUE is not defined, FUNCTION_VALUE serves both purposes.

FUNCTION_OUTGOING_VALUE is not used for return vales with aggregate data types,

because these are returned in another way. See STRUCT_VALUE_REGNUM and related

macros, below.

LIBCALL_VALUE (mode)

A C expression to create an RTX representing the place where a library function returns

a value of mode mode. If the precise function being called is known, func is a tree node

(FUNCTION_DECL) for it; otherwise, func is a null pointer. This makes it possible to

use a different value-returning convention for specific functions when all their calls are

known.

Note that “library function” in this context means a compiler support routine, used

to perform arithmetic, whose name is known specially by the compiler and was not

mentioned in the C code being compiled.

The definition of LIBRARY_VALUE need not be concerned aggregate data types, because

none of the library functions returns such types.

FUNCTION_VALUE_REGNO_P (regno)

A C expression that is nonzero if regno is the number of a hard register in which the

values of called function may come back.

A register whose use for returning values is limited to serving as the second of a pair

(for a value of type double, say) need not be recognized by this macro. So for most

machines, this definition suffices:

#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)

If the machine has register windows, so that the caller and the called function use

different registers for the return value, this macro should recognize only the caller’s

register numbers.

302 Using and Porting GNU CC

14.7.7 How Large Values Are Returned

When a function value’s mode is BLKmode (and in some other cases), the value is not returned

according to FUNCTION_VALUE (see Section 14.7.6 [Scalar Return], page 300). Instead, the caller

passes the address of a block of memory in which the value should be stored. This address is called

the structure value address.

This section describes how to control returning structure values in memory.

RETURN_IN_MEMORY (type)

A C expression which can inhibit the returning of certain function values in registers,

based on the type of value. A nonzero value says to return the function value in

memory, just as large structures are always returned. Here type will be a C expression

of type tree, representing the data type of the value.

Note that values of mode BLKmode are returned in memory regardless of this macro.

Also, the option ‘-fpcc-struct-return’ takes effect regardless of this macro. On most

systems, it is possible to leave the macro undefined; this causes a default definition to

be used, whose value is the constant 0.

STRUCT_VALUE_REGNUM

If the structure value address is passed in a register, then STRUCT_VALUE_REGNUM should

be the number of that register.

STRUCT_VALUE

If the structure value address is not passed in a register, define STRUCT_VALUE as an

expression returning an RTX for the place where the address is passed. If it returns 0,

the address is passed as an “invisible” first argument.

STRUCT_VALUE_INCOMING_REGNUM

On some architectures the place where the structure value address is found by the

called function is not the same place that the caller put it. This can be due to register

windows, or it could be because the function prologue moves it to a different place.

If the incoming location of the structure value address is in a register, define this macro

as the register number.

STRUCT_VALUE_INCOMING

If the incoming location is not a register, define STRUCT_VALUE_INCOMING as an expres-

sion for an RTX for where the called function should find the value. If it should find

the value on the stack, define this to create a mem which refers to the frame pointer. A

definition of 0 means that the address is passed as an “invisible” first argument.

Chapter 14: Target Description Macros 303

PCC_STATIC_STRUCT_RETURN

Define this macro if the usual system convention on the target machine for returning

structures and unions is for the called function to return the address of a static variable

containing the value. GNU CC does not normally use this convention, even if it is the

usual one, but does use it if ‘-fpcc-struct-return’ is specified.

Do not define this if the usual system convention is for the caller to pass an address to

the subroutine.

14.7.8 Caller-Saves Register Allocation

If you enable it, GNU CC can save registers around function calls. This makes it possible to

use call-clobbered registers to hold variables that must live across calls.

DEFAULT_CALLER_SAVES

Define this macro if function calls on the target machine do not preserve any registers;

in other words, if CALL_USED_REGISTERS has 1 for all registers. This macro enables

‘-fcaller-saves’ by default. Eventually that option will be enabled by default on all

machines and both the option and this macro will be eliminated.

CALLER_SAVE_PROFITABLE (refs, calls)

A C expression to determine whether it is worthwhile to consider placing a pseudo-

register in a call-clobbered hard register and saving and restoring it around each func-

tion call. The expression should be 1 when this is worth doing, and 0 otherwise.

If you don’t define this macro, a default is used which is good on most machines: 4 *

calls < refs.

14.7.9 Function Entry and Exit

This section describes the macros that output function entry (prologue) and exit (epilogue)

code.

FUNCTION_PROLOGUE (file, size)

A C compound statement that outputs the assembler code for entry to a function. The

prologue is responsible for setting up the stack frame, initializing the frame pointer

register, saving registers that must be saved, and allocating size additional bytes of

storage for the local variables. size is an integer. file is a stdio stream to which the

assembler code should be output.

304 Using and Porting GNU CC

The label for the beginning of the function need not be output by this macro. That

has already been done when the macro is run.

To determine which registers to save, the macro can refer to the array regs_ever_live:

element r is nonzero if hard register r is used anywhere within the function. This implies

the function prologue should save register r, provided it is not one of the call-used

registers. (FUNCTION_EPILOGUE must likewise use regs_ever_live.)

On machines that have “register windows”, the function entry code does not save on the

stack the registers that are in the windows, even if they are supposed to be preserved

by function calls; instead it takes appropriate steps to “push” the register stack, if any

non-call-used registers are used in the function.

On machines where functions may or may not have frame-pointers, the function entry

code must vary accordingly; it must set up the frame pointer if one is wanted, and not

otherwise. To determine whether a frame pointer is in wanted, the macro can refer to

the variable frame_pointer_needed. The variable’s value will be 1 at run time in a

function that needs a frame pointer. See Section 14.7.3 [Elimination], page 293.

The function entry code is responsible for allocating any stack space required for the

function. This stack space consists of the regions listed below. In most cases, these

regions are allocated in the order listed, with the last listed region closest to the top

of the stack (the lowest address if STACK_GROWS_DOWNWARD is defined, and the highest

address if it is not defined). You can use a different order for a machine if doing so is

more convenient or required for compatibility reasons. Except in cases where required

by standard or by a debugger, there is no reason why the stack layout used by GCC

need agree with that used by other compilers for a machine.

• A region of current_function_pretend_args_size bytes of uninitialized space

just underneath the first argument arriving on the stack. (This may not be at

the very start of the allocated stack region if the calling sequence has pushed

anything else since pushing the stack arguments. But usually, on such machines,

nothing else has been pushed yet, because the function prologue itself does all

the pushing.) This region is used on machines where an argument may be passed

partly in registers and partly in memory, and, in some cases to support the features

in ‘varargs.h’ and ‘stdargs.h’.

• An area of memory used to save certain registers used by the function. The size

of this area, which may also include space for such things as the return address

and pointers to previous stack frames, is machine-specific and usually depends on

which registers have been used in the function. Machines with register windows

often do not require a save area.

• A region of at least size bytes, possibly rounded up to an allocation boundary, to

contain the local variables of the function. On some machines, this region and the

save area may occur in the opposite order, with the save area closer to the top of

the stack.

Chapter 14: Target Description Macros 305

• Optionally, in the case that ACCUMULATE_OUTGOING_ARGS is defined, a region of

current_function_outgoing_args_size bytes to be used for outgoing argument

lists of the function. See Section 14.7.4 [Stack Arguments], page 295.

Normally, it is necessary for FUNCTION_PROLOGUE and FUNCTION_EPILOGUE to treat leaf

functions specially. The C variable leaf_function is nonzero for such a function.

EXIT_IGNORE_STACK

Define this macro as a C expression that is nonzero if the return instruction or the

function epilogue ignores the value of the stack pointer; in other words, if it is safe to

delete an instruction to adjust the stack pointer before a return from the function.

Note that this macro’s value is relevant only for functions for which frame pointers are

maintained. It is never safe to delete a final stack adjustment in a function that has

no frame pointer, and the compiler knows this regardless of EXIT_IGNORE_STACK.

FUNCTION_EPILOGUE (file, size)

A C compound statement that outputs the assembler code for exit from a function. The

epilogue is responsible for restoring the saved registers and stack pointer to their values

when the function was called, and returning control to the caller. This macro takes

the same arguments as the macro FUNCTION_PROLOGUE, and the registers to restore are

determined from regs_ever_live and CALL_USED_REGISTERS in the same way.

On some machines, there is a single instruction that does all the work of returning from

the function. On these machines, give that instruction the name ‘return’ and do not

define the macro FUNCTION_EPILOGUE at all.

Do not define a pattern named ‘return’ if you want the FUNCTION_EPILOGUE to be used.

If you want the target switches to control whether return instructions or epilogues are

used, define a ‘return’ pattern with a validity condition that tests the target switches

appropriately. If the ‘return’ pattern’s validity condition is false, epilogues will be

used.

On machines where functions may or may not have frame-pointers, the function exit

code must vary accordingly. Sometimes the code for these two cases is completely

different. To determine whether a frame pointer is wanted, the macro can refer to

the variable frame_pointer_needed. The variable’s value will be 1 at run time in a

function that needs a frame pointer.

Normally, it is necessary for FUNCTION_PROLOGUE and FUNCTION_EPILOGUE to treat leaf

functions specially. The C variable leaf_function is nonzero for such a function. See

Section 14.5.4 [Leaf Functions], page 282.

On some machines, some functions pop their arguments on exit while others leave that

for the caller to do. For example, the 68020 when given ‘-mrtd’ pops arguments in

functions that take a fixed number of arguments.

Your definition of the macro RETURN_POPS_ARGS decides which functions pop their

own arguments. FUNCTION_EPILOGUE needs to know what was decided. The variable

306 Using and Porting GNU CC

current_function_pops_args is the number of bytes of its arguments that a function

should pop. See Section 14.7.6 [Scalar Return], page 300.

DELAY_SLOTS_FOR_EPILOGUE

Define this macro if the function epilogue contains delay slots to which instructions

from the rest of the function can be “moved”. The definition should be a C expression

whose value is an integer representing the number of delay slots there.

ELIGIBLE_FOR_EPILOGUE_DELAY (insn, n)

A C expression that returns 1 if insn can be placed in delay slot number n of the

epilogue.

The argument n is an integer which identifies the delay slot now being considered

(since different slots may have different rules of eligibility). It is never negative and is

always less than the number of epilogue delay slots (what DELAY_SLOTS_FOR_EPILOGUE

returns). If you reject a particular insn for a given delay slot, in principle, it may be

reconsidered for a subsequent delay slot. Also, other insns may (at least in principle)

be considered for the so far unfilled delay slot.

The insns accepted to fill the epilogue delay slots are put in an RTL list made with

insn_list objects, stored in the variable current_function_epilogue_delay_list.

The insn for the first delay slot comes first in the list. Your definition of the macro

FUNCTION_EPILOGUE should fill the delay slots by outputting the insns in this list,

usually by calling final_scan_insn.

You need not define this macro if you did not define DELAY_SLOTS_FOR_EPILOGUE.

14.7.10 Generating Code for Profiling

FUNCTION_PROFILER (file, labelno)

A C statement or compound statement to output to file some assembler code to call the

profiling subroutine mcount. Before calling, the assembler code must load the address

of a counter variable into a register where mcount expects to find the address. The

name of this variable is ‘LP’ followed by the number labelno, so you would generate the

name using ‘LP%d’ in a fprintf.

The details of how the address should be passed to mcount are determined by your

operating system environment, not by GNU CC. To figure them out, compile a small

program for profiling using the system’s installed C compiler and look at the assembler

code that results.

PROFILE_BEFORE_PROLOGUE

Define this macro if the code for function profiling should come before the function

prologue. Normally, the profiling code comes after.

Chapter 14: Target Description Macros 307

FUNCTION_BLOCK_PROFILER (file, labelno)

A C statement or compound statement to output to file some assembler code to ini-

tialize basic-block profiling for the current object module. This code should call the

subroutine __bb_init_func once per object module, passing it as its sole argument

the address of a block allocated in the object module.

The name of the block is a local symbol made with this statement:

ASM_GENERATE_INTERNAL_LABEL (buffer, "LPBX", 0);

Of course, since you are writing the definition of ASM_GENERATE_INTERNAL_LABEL as

well as that of this macro, you can take a short cut in the definition of this macro and

use the name that you know will result.

The first word of this block is a flag which will be nonzero if the object module has

already been initialized. So test this word first, and do not call __bb_init_func if the

flag is nonzero.

BLOCK_PROFILER (file, blockno)

A C statement or compound statement to increment the count associated with the

basic block number blockno. Basic blocks are numbered separately from zero within

each compilation. The count associated with block number blockno is at index blockno

in a vector of words; the name of this array is a local symbol made with this statement:

ASM_GENERATE_INTERNAL_LABEL (buffer, "LPBX", 2);

Of course, since you are writing the definition of ASM_GENERATE_INTERNAL_LABEL as

well as that of this macro, you can take a short cut in the definition of this macro and

use the name that you know will result.

14.8 Implementing the Varargs Macros

GNU CC comes with an implementation of ‘varargs.h’ and ‘stdarg.h’ that work without

change on machines that pass arguments on the stack. Other machines require their own imple-

mentations of varargs, and the two machine independent header files must have conditionals to

include it.

ANSI ‘stdarg.h’ differs from traditional ‘varargs.h’ mainly in the calling convention for

va_start. The traditional implementation takes just one argument, which is the variable in which

to store the argument pointer. The ANSI implementation of va_start takes an additional second

argument. The user is supposed to write the last named argument of the function here.

However, va_start should not use this argument. The way to find the end of the named

arguments is with the built-in functions described below.

308 Using and Porting GNU CC

__builtin_saveregs ()

Use this built-in function to save the argument registers in memory so that the varargs

mechanism can access them. Both ANSI and traditional versions of va_start must use

__builtin_saveregs, unless you use SETUP_INCOMING_VARARGS (see below) instead.

On some machines, __builtin_saveregs is open-coded under the control of the macro

EXPAND_BUILTIN_SAVEREGS. On other machines, it calls a routine written in assembler

language, found in ‘libgcc2.c’.

Regardless of what code is generated for the call to __builtin_saveregs, it appears

at the beginning of the function, not where the call to __builtin_saveregs is written.

This is because the registers must be saved before the function starts to use them for

its own purposes.

__builtin_args_info (category)

Use this built-in function to find the first anonymous arguments in registers.

In general, a machine may have several categories of registers used for arguments, each

for a particular category of data types. (For example, on some machines, floating-point

registers are used for floating-point arguments while other arguments are passed in the

general registers.) To make non-varargs functions use the proper calling convention,

you have defined the CUMULATIVE_ARGS data type to record how many registers in each

category have been used so far

__builtin_args_info accesses the same data structure of type CUMULATIVE_ARGS after

the ordinary argument layout is finished with it, with category specifying which word

to access. Thus, the value indicates the first unused register in a given category.

Normally, you would use __builtin_args_info in the implementation of va_start,

accessing each category just once and storing the value in the va_list object. This is

because va_list will have to update the values, and there is no way to alter the values

accessed by __builtin_args_info.

__builtin_next_arg ()

This is the equivalent of __builtin_args_info, for stack arguments. It returns the ad-

dress of the first anonymous stack argument, as type void *. If ARGS_GROW_DOWNWARD,

it returns the address of the location above the first anonymous stack argument. Use

it in va_start to initialize the pointer for fetching arguments from the stack.

__builtin_classify_type (object)

Since each machine has its own conventions for which data types are passed in which

kind of register, your implementation of va_arg has to embody these conventions. The

easiest way to categorize the specified data type is to use __builtin_classify_type

together with sizeof and __alignof__.

__builtin_classify_type ignores the value of object, considering only its data type.

It returns an integer describing what kind of type that is—integer, floating, pointer,

structure, and so on.

Chapter 14: Target Description Macros 309

The file ‘typeclass.h’ defines an enumeration that you can use to interpret the values

of __builtin_classify_type.

These machine description macros help implement varargs:

EXPAND_BUILTIN_SAVEREGS (args)

If defined, is a C expression that produces the machine-specific code for a call to

__builtin_saveregs. This code will be moved to the very beginning of the function,

before any parameter access are made. The return value of this function should be an

RTX that contains the value to use as the return of __builtin_saveregs.

The argument args is a tree_list containing the arguments that were passed to

__builtin_saveregs.

If this macro is not defined, the compiler will output an ordinary call to the library

function ‘__builtin_saveregs’.

SETUP_INCOMING_VARARGS (args so far, mode, type, pretend args size, second time)

This macro offers an alternative to using __builtin_saveregs and defining the macro

EXPAND_BUILTIN_SAVEREGS. Use it to store the anonymous register arguments into the

stack so that all the arguments appear to have been passed consecutively on the stack.

Once this is done, you can use the standard implementation of varargs that works for

machines that pass all their arguments on the stack.

The argument args so far is the CUMULATIVE_ARGS data structure, containing the values

that obtain after processing of the named arguments. The arguments mode and type

describe the last named argument—its machine mode and its data type as a tree node.

The macro implementation should do two things: first, push onto the stack all the

argument registers not used for the named arguments, and second, store the size of the

data thus pushed into the int-valued variable whose name is supplied as the argument

pretend args size. The value that you store here will serve as additional offset for

setting up the stack frame.

Because you must generate code to push the anonymous arguments at compile time

without knowing their data types, SETUP_INCOMING_VARARGS is only useful on machines

that have just a single category of argument register and use it uniformly for all data

types.

If the argument second time is nonzero, it means that the arguments of the function are

being analyzed for the second time. This happens for an inline function, which is not

actually compiled until the end of the source file. The macro SETUP_INCOMING_VARARGS

should not generate any instructions in this case.

310 Using and Porting GNU CC

14.9 Trampolines for Nested Functions

A trampoline is a small piece of code that is created at run time when the address of a nested

function is taken. It normally resides on the stack, in the stack frame of the containing function.

These macros tell GNU CC how to generate code to allocate and initialize a trampoline.

The instructions in the trampoline must do two things: load a constant address into the static

chain register, and jump to the real address of the nested function. On CISC machines such as the

m68k, this requires two instructions, a move immediate and a jump. Then the two addresses exist

in the trampoline as word-long immediate operands. On RISC machines, it is often necessary to

load each address into a register in two parts. Then pieces of each address form separate immediate

operands.

The code generated to initialize the trampoline must store the variable parts—the static chain

value and the function address—into the immediate operands of the instructions. On a CISC

machine, this is simply a matter of copying each address to a memory reference at the proper offset

from the start of the trampoline. On a RISC machine, it may be necessary to take out pieces of

the address and store them separately.

TRAMPOLINE_TEMPLATE (file)

A C statement to output, on the stream file, assembler code for a block of data that

contains the constant parts of a trampoline. This code should not include a label—the

label is taken care of automatically.

TRAMPOLINE_SECTION

The name of a subroutine to switch to the section in which the trampoline template

is to be placed (see Section 14.14 [Sections], page 323). The default is a value of

‘readonly_data_section’, which places the trampoline in the section containing read-

only data.

TRAMPOLINE_SIZE

A C expression for the size in bytes of the trampoline, as an integer.

TRAMPOLINE_ALIGNMENT

Alignment required for trampolines, in bits.

If you don’t define this macro, the value of BIGGEST_ALIGNMENT is used for aligning

trampolines.

INITIALIZE_TRAMPOLINE (addr, fnaddr, static chain)

A C statement to initialize the variable parts of a trampoline. addr is an RTX for the

address of the trampoline; fnaddr is an RTX for the address of the nested function;

Chapter 14: Target Description Macros 311

static chain is an RTX for the static chain value that should be passed to the function

when it is called.

ALLOCATE_TRAMPOLINE (fp)

A C expression to allocate run-time space for a trampoline. The expression value

should be an RTX representing a memory reference to the space for the trampoline.

If this macro is not defined, by default the trampoline is allocated as a stack slot.

This default is right for most machines. The exceptions are machines where it is

impossible to execute instructions in the stack area. On such machines, you may have to

implement a separate stack, using this macro in conjunction with FUNCTION_PROLOGUE

and FUNCTION_EPILOGUE.

fp points to a data structure, a struct function, which describes the compilation

status of the immediate containing function of the function which the trampoline is

for. Normally (when ALLOCATE_TRAMPOLINE is not defined), the stack slot for the

trampoline is in the stack frame of this containing function. Other allocation strategies

probably must do something analogous with this information.

Implementing trampolines is difficult on many machines because they have separate instruction

and data caches. Writing into a stack location fails to clear the memory in the instruction cache,

so when the program jumps to that location, it executes the old contents.

Here are two possible solutions. One is to clear the relevant parts of the instruction cache

whenever a trampoline is set up. The other is to make all trampolines identical, by having them

jump to a standard subroutine. The former technique makes trampoline execution faster; the latter

makes initialization faster.

To clear the instruction cache when a trampoline is initialized, define the following macros which

describe the shape of the cache.

INSN_CACHE_SIZE

The total size in bytes of the cache.

INSN_CACHE_LINE_WIDTH

The length in bytes of each cache line. The cache is divided into cache lines which

are disjoint slots, each holding a contiguous chunk of data fetched from memory. Each

time data is brought into the cache, an entire line is read at once. The data loaded

into a cache line is always aligned on a boundary equal to the line size.

INSN_CACHE_DEPTH

The number of alternative cache lines that can hold any particular memory location.

312 Using and Porting GNU CC

To use a standard subroutine, define the following macro. In addition, you must make sure that

the instructions in a trampoline fill an entire cache line with identical instructions, or else ensure

that the beginning of the trampoline code is always aligned at the same point in its cache line.

Look in ‘m68k.h’ as a guide.

TRANSFER_FROM_TRAMPOLINE

Define this macro if trampolines need a special subroutine to do their work. The macro

should expand to a series of asm statements which will be compiled with GNU CC. They

go in a library function named __transfer_from_trampoline.

If you need to avoid executing the ordinary prologue code of a compiled C function

when you jump to the subroutine, you can do so by placing a special label of your

own in the assembler code. Use one asm statement to generate an assembler label, and

another to make the label global. Then trampolines can use that label to jump directly

to your special assembler code.

14.10 Implicit Calls to Library Routines

MULSI3_LIBCALL

A C string constant giving the name of the function to call for multiplication of one

signed full-word by another. If you do not define this macro, the default name is used,

which is __mulsi3, a function defined in ‘libgcc.a’.

DIVSI3_LIBCALL

A C string constant giving the name of the function to call for division of one signed

full-word by another. If you do not define this macro, the default name is used, which

is __divsi3, a function defined in ‘libgcc.a’.

UDIVSI3_LIBCALL

A C string constant giving the name of the function to call for division of one unsigned

full-word by another. If you do not define this macro, the default name is used, which

is __udivsi3, a function defined in ‘libgcc.a’.

MODSI3_LIBCALL

A C string constant giving the name of the function to call for the remainder in division

of one signed full-word by another. If you do not define this macro, the default name

is used, which is __modsi3, a function defined in ‘libgcc.a’.

UMODSI3_LIBCALL

A C string constant giving the name of the function to call for the remainder in division

of one unsigned full-word by another. If you do not define this macro, the default name

is used, which is __umodsi3, a function defined in ‘libgcc.a’.

Chapter 14: Target Description Macros 313

MULDI3_LIBCALL

A C string constant giving the name of the function to call for multiplication of one

signed double-word by another. If you do not define this macro, the default name is

used, which is __muldi3, a function defined in ‘libgcc.a’.

DIVDI3_LIBCALL

A C string constant giving the name of the function to call for division of one signed

double-word by another. If you do not define this macro, the default name is used,

which is __divdi3, a function defined in ‘libgcc.a’.

UDIVDI3_LIBCALL

A C string constant giving the name of the function to call for division of one unsigned

full-word by another. If you do not define this macro, the default name is used, which

is __udivdi3, a function defined in ‘libgcc.a’.

MODDI3_LIBCALL

A C string constant giving the name of the function to call for the remainder in division

of one signed double-word by another. If you do not define this macro, the default name

is used, which is __moddi3, a function defined in ‘libgcc.a’.

UMODDI3_LIBCALL

A C string constant giving the name of the function to call for the remainder in division

of one unsigned full-word by another. If you do not define this macro, the default name

is used, which is __umoddi3, a function defined in ‘libgcc.a’.

TARGET_EDOM

The value of EDOM on the target machine, as a C integer constant expression. If you

don’t define this macro, GNU CC does not attempt to deposit the value of EDOM into

errno directly. Look in ‘/usr/include/errno.h’ to find the value of EDOM on your

system.

If you do not define TARGET_EDOM, then compiled code reports domain errors by call-

ing the library function and letting it report the error. If mathematical functions on

your system use matherr when there is an error, then you should leave TARGET_EDOM

undefined so that matherr is used normally.

GEN_ERRNO_RTX

Define this macro as a C expression to create an rtl expression that refers to the global

“variable” errno. (On certain systems, errno may not actually be a variable.) If you

don’t define this macro, a reasonable default is used.

TARGET_MEM_FUNCTIONS

Define this macro if GNU CC should generate calls to the System V (and ANSI C)

library functions memcpy and memset rather than the BSD functions bcopy and bzero.

314 Using and Porting GNU CC

LIBGCC_NEEDS_DOUBLE

Define this macro if only float arguments cannot be passed to library routines (so they

must be converted to double). This macro affects both how library calls are generated

and how the library routines in ‘libgcc1.c’ accept their arguments. It is useful on

machines where floating and fixed point arguments are passed differently, such as the

i860.

FLOAT_ARG_TYPE

Define this macro to override the type used by the library routines to pick up arguments

of type float. (By default, they use a union of float and int.)

The obvious choice would be float—but that won’t work with traditional C compilers

that expect all arguments declared as float to arrive as double. To avoid this con-

version, the library routines ask for the value as some other type and then treat it as

a float.

On some systems, no other type will work for this. For these systems, you must use

LIBGCC_NEEDS_DOUBLE instead, to force conversion of the values double before they

are passed.

FLOATIFY (passed-value)

Define this macro to override the way library routines redesignate a float argument

as a float instead of the type it was passed as. The default is an expression which

takes the float field of the union.

FLOAT_VALUE_TYPE

Define this macro to override the type used by the library routines to return values

that ought to have type float. (By default, they use int.)

The obvious choice would be float—but that won’t work with traditional C compilers

gratuitously convert values declared as float into double.

INTIFY (float-value)

Define this macro to override the way the value of a float-returning library routine

should be packaged in order to return it. These functions are actually declared to

return type FLOAT_VALUE_TYPE (normally int).

These values can’t be returned as type float because traditional C compilers would

gratuitously convert the value to a double.

A local variable named intify is always available when the macro INTIFY is used. It is

a union of a float field named f and a field named i whose type is FLOAT_VALUE_TYPE

or int.

If you don’t define this macro, the default definition works by copying the value through

that union.

Chapter 14: Target Description Macros 315

nongcc_SI_type

Define this macro as the name of the data type corresponding to SImode in the system’s

own C compiler.

You need not define this macro if that type is int, as it usually is.

perform_. . .

Define these macros to supply explicit C statements to carry out various arithmetic

operations on types float and double in the library routines in ‘libgcc1.c’. See that

file for a full list of these macros and their arguments.

On most machines, you don’t need to define any of these macros, because the C compiler

that comes with the system takes care of doing them.

NEXT_OBJC_RUNTIME

Define this macro to generate code for Objective C message sending using the calling

convention of the NeXT system. This calling convention involves passing the object, the

selector and the method arguments all at once to the method-lookup library function.

The default calling convention passes just the object and the selector to the lookup

function, which returns a pointer to the method.

14.11 Addressing Modes

HAVE_POST_INCREMENT

Define this macro if the machine supports post-increment addressing.

HAVE_PRE_INCREMENT

HAVE_POST_DECREMENT

HAVE_PRE_DECREMENT

Similar for other kinds of addressing.

CONSTANT_ADDRESS_P (x)

A C expression that is 1 if the RTX x is a constant which is a valid address. On

most machines, this can be defined as CONSTANT_P (x), but a few machines are more

restrictive in which constant addresses are supported.

CONSTANT_P accepts integer-values expressions whose values are not explicitly known,

such as symbol_ref, label_ref, and high expressions and const arithmetic expres-

sions, in addition to const_int and const_double expressions.

MAX_REGS_PER_ADDRESS

A number, the maximum number of registers that can appear in a valid memory ad-

dress. Note that it is up to you to specify a value equal to the maximum number that

GO_IF_LEGITIMATE_ADDRESS would ever accept.

316 Using and Porting GNU CC

GO_IF_LEGITIMATE_ADDRESS (mode, x, label)

A C compound statement with a conditional goto label; executed if x (an RTX) is

a legitimate memory address on the target machine for a memory operand of mode

mode.

It usually pays to define several simpler macros to serve as subroutines for this one.

Otherwise it may be too complicated to understand.

This macro must exist in two variants: a strict variant and a non-strict one. The strict

variant is used in the reload pass. It must be defined so that any pseudo-register that

has not been allocated a hard register is considered a memory reference. In contexts

where some kind of register is required, a pseudo-register with no hard register must

be rejected.

The non-strict variant is used in other passes. It must be defined to accept all pseudo-

registers in every context where some kind of register is required.

Compiler source files that want to use the strict variant of this macro define the macro

REG_OK_STRICT. You should use an #ifdef REG_OK_STRICT conditional to define the

strict variant in that case and the non-strict variant otherwise.

Typically among the subroutines used to define GO_IF_LEGITIMATE_ADDRESS are sub-

routines to check for acceptable registers for various purposes (one for base registers,

one for index registers, and so on). Then only these subroutine macros need have two

variants; the higher levels of macros may be the same whether strict or not.

Normally, constant addresses which are the sum of a symbol_ref and an integer are

stored inside a const RTX to mark them as constant. Therefore, there is no need to

recognize such sums specifically as legitimate addresses. Normally you would simply

recognize any const as legitimate.

Usually PRINT_OPERAND_ADDRESS is not prepared to handle constant sums that are not

marked with const. It assumes that a naked plus indicates indexing. If so, then you

must reject such naked constant sums as illegitimate addresses, so that none of them

will be given to PRINT_OPERAND_ADDRESS.

On some machines, whether a symbolic address is legitimate depends on the section

that the address refers to. On these machines, define the macro ENCODE_SECTION_INFO

to store the information into the symbol_ref, and then check for it here. When you see

a const, you will have to look inside it to find the symbol_ref in order to determine

the section. See Section 14.16 [Assembler Format], page 326.

The best way to modify the name string is by adding text to the beginning, with suitable

punctuation to prevent any ambiguity. Allocate the new name in saveable_obstack.

You will have to modify ASM_OUTPUT_LABELREF to remove and decode the added text

and output the name accordingly, and define STRIP_NAME_ENCODING to access the orig-

inal name string.

Chapter 14: Target Description Macros 317

You can check the information stored here into the symbol_ref in the definitions of

GO_IF_LEGITIMATE_ADDRESS and PRINT_OPERAND_ADDRESS.

REG_OK_FOR_BASE_P (x)

A C expression that is nonzero if x (assumed to be a reg RTX) is valid for use as a

base register. For hard registers, it should always accept those which the hardware

permits and reject the others. Whether the macro accepts or rejects pseudo registers

must be controlled by REG_OK_STRICT as described above. This usually requires two

variant definitions, of which REG_OK_STRICT controls the one actually used.

REG_OK_FOR_INDEX_P (x)

A C expression that is nonzero if x (assumed to be a reg RTX) is valid for use as an

index register.

The difference between an index register and a base register is that the index register

may be scaled. If an address involves the sum of two registers, neither one of them

scaled, then either one may be labeled the “base” and the other the “index”; but

whichever labeling is used must fit the machine’s constraints of which registers may

serve in each capacity. The compiler will try both labelings, looking for one that is

valid, and will reload one or both registers only if neither labeling works.

LEGITIMIZE_ADDRESS (x, oldx, mode, win)

A C compound statement that attempts to replace x with a valid memory address for

an operand of mode mode. win will be a C statement label elsewhere in the code; the

macro definition may use

GO_IF_LEGITIMATE_ADDRESS (mode, x, win);

to avoid further processing if the address has become legitimate.

x will always be the result of a call to break_out_memory_refs, and oldx will be the

operand that was given to that function to produce x.

The code generated by this macro should not alter the substructure of x. If it transforms

x into a more legitimate form, it should assign x (which will always be a C variable) a

new value.

It is not necessary for this macro to come up with a legitimate address. The compiler

has standard ways of doing so in all cases. In fact, it is safe for this macro to do

nothing. But often a machine-dependent strategy can generate better code.

GO_IF_MODE_DEPENDENT_ADDRESS (addr, label)

A C statement or compound statement with a conditional goto label; executed if

memory address x (an RTX) can have different meanings depending on the machine

mode of the memory reference it is used for or if the address is valid for some modes

but not others.

Autoincrement and autodecrement addresses typically have mode-dependent effects

because the amount of the increment or decrement is the size of the operand being ad-

318 Using and Porting GNU CC

dressed. Some machines have other mode-dependent addresses. Many RISC machines

have no mode-dependent addresses.

You may assume that addr is a valid address for the machine.

LEGITIMATE_CONSTANT_P (x)

A C expression that is nonzero if x is a legitimate constant for an immediate operand

on the target machine. You can assume that x satisfies CONSTANT_P, so you need not

check this. In fact, ‘1’ is a suitable definition for this macro on machines where anything

CONSTANT_P is valid.

14.12 Condition Code Status

The file ‘conditions.h’ defines a variable cc_status to describe how the condition code was

computed (in case the interpretation of the condition code depends on the instruction that it was

set by). This variable contains the RTL expressions on which the condition code is currently based,

and several standard flags.

Sometimes additional machine-specific flags must be defined in the machine description header

file. It can also add additional machine-specific information by defining CC_STATUS_MDEP.

CC_STATUS_MDEP

C code for a data type which is used for declaring the mdep component of cc_status.

It defaults to int.

This macro is not used on machines that do not use cc0.

CC_STATUS_MDEP_INIT

A C expression to initialize the mdep field to “empty”. The default definition does

nothing, since most machines don’t use the field anyway. If you want to use the field,

you should probably define this macro to initialize it.

This macro is not used on machines that do not use cc0.

NOTICE_UPDATE_CC (exp, insn)

A C compound statement to set the components of cc_status appropriately for an

insn insn whose body is exp. It is this macro’s responsibility to recognize insns that

set the condition code as a byproduct of other activity as well as those that explicitly

set (cc0).

This macro is not used on machines that do not use cc0.

If there are insns that do not set the condition code but do alter other machine registers,

this macro must check to see whether they invalidate the expressions that the condition

Chapter 14: Target Description Macros 319

code is recorded as reflecting. For example, on the 68000, insns that store in address

registers do not set the condition code, which means that usually NOTICE_UPDATE_CC

can leave cc_status unaltered for such insns. But suppose that the previous insn set

the condition code based on location ‘a4@(102)’ and the current insn stores a new value

in ‘a4’. Although the condition code is not changed by this, it will no longer be true

that it reflects the contents of ‘a4@(102)’. Therefore, NOTICE_UPDATE_CC must alter

cc_status in this case to say that nothing is known about the condition code value.

The definition of NOTICE_UPDATE_CC must be prepared to deal with the results of

peephole optimization: insns whose patterns are parallel RTXs containing various

reg, mem or constants which are just the operands. The RTL structure of these insns is

not sufficient to indicate what the insns actually do. What NOTICE_UPDATE_CC should

do when it sees one is just to run CC_STATUS_INIT.

A possible definition of NOTICE_UPDATE_CC is to call a function that looks at an at-

tribute (see Section 13.15 [Insn Attributes], page 251) named, for example, ‘cc’. This

avoids having detailed information about patterns in two places, the ‘md’ file and in

NOTICE_UPDATE_CC.

EXTRA_CC_MODES

A list of names to be used for additional modes for condition code values in regis-

ters (see Section 13.10 [Jump Patterns], page 238). These names are added to enum

machine_mode and all have class MODE_CC. By convention, they should start with ‘CC’

and end with ‘mode’.

You should only define this macro if your machine does not use cc0 and only if addi-

tional modes are required.

EXTRA_CC_NAMES

A list of C strings giving the names for the modes listed in EXTRA_CC_MODES. For

example, the Sparc defines this macro and EXTRA_CC_MODES as

#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode
#define EXTRA_CC_NAMES "CC_NOOV", "CCFP"

This macro is not required if EXTRA_CC_MODES is not defined.

SELECT_CC_MODE (op, x, y)

Returns a mode from class MODE_CC to be used when comparison operation code op

is applied to rtx x and y. For example, on the Sparc, SELECT_CC_MODE is defined as

(see see Section 13.10 [Jump Patterns], page 238 for a description of the reason for this

definition)

#define SELECT_CC_MODE(OP,X,Y) \
(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
: ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS || GET_CODE (X) == NEG)

? CC_NOOVmode : CCmode))

320 Using and Porting GNU CC

This macro is not required if EXTRA_CC_MODES is not defined.

14.13 Describing Relative Costs of Operations

These macros let you describe the relative speed of various operations on the target machine.

CONST_COSTS (x, code, outer code)

A part of a C switch statement that describes the relative costs of constant RTL expres-

sions. It must contain case labels for expression codes const_int, const, symbol_ref,

label_ref and const_double. Each case must ultimately reach a return statement

to return the relative cost of the use of that kind of constant value in an expression.

The cost may depend on the precise value of the constant, which is available for ex-

amination in x, and the rtx code of the expression in which it is contained, found in

outer code.

code is the expression code—redundant, since it can be obtained with GET_CODE (x).

RTX_COSTS (x, code, outer code)

Like CONST_COSTS but applies to nonconstant RTL expressions. This can be used, for

example, to indicate how costly a multiply instruction is. In writing this macro, you

can use the construct COSTS_N_INSNS (n) to specify a cost equal to n fast instructions.

outer code is the code of the expression in which x is contained.

This macro is optional; do not define it if the default cost assumptions are adequate

for the target machine.

ADDRESS_COST (address)

An expression giving the cost of an addressing mode that contains address. If not

defined, the cost is computed from the address expression and the CONST_COSTS values.

For most CISC machines, the default cost is a good approximation of the true cost of

the addressing mode. However, on RISC machines, all instructions normally have the

same length and execution time. Hence all addresses will have equal costs.

In cases where more than one form of an address is known, the form with the lowest

cost will be used. If multiple forms have the same, lowest, cost, the one that is the

most complex will be used.

For example, suppose an address that is equal to the sum of a register and a constant

is used twice in the same basic block. When this macro is not defined, the address will

be computed in a register and memory references will be indirect through that register.

On machines where the cost of the addressing mode containing the sum is no higher

than that of a simple indirect reference, this will produce an additional instruction and

Chapter 14: Target Description Macros 321

possibly require an additional register. Proper specification of this macro eliminates

this overhead for such machines.

Similar use of this macro is made in strength reduction of loops.

address need not be valid as an address. In such a case, the cost is not relevant and

can be any value; invalid addresses need not be assigned a different cost.

On machines where an address involving more than one register is as cheap as an

address computation involving only one register, defining ADDRESS_COST to reflect this

can cause two registers to be live over a region of code where only one would have been

if ADDRESS_COST were not defined in that manner. This effect should be considered

in the definition of this macro. Equivalent costs should probably only be given to

addresses with different numbers of registers on machines with lots of registers.

This macro will normally either not be defined or be defined as a constant.

REGISTER_MOVE_COST (from, to)

A C expression for the cost of moving data from a register in class from to one in class

to. The classes are expressed using the enumeration values such as GENERAL_REGS. A

value of 2 is the default; other values are interpreted relative to that.

It is not required that the cost always equal 2 when from is the same as to; on some

machines it is expensive to move between registers if they are not general registers.

If reload sees an insn consisting of a single set between two hard registers, and if

REGISTER_MOVE_COST applied to their classes returns a value of 2, reload does not

check to ensure that the constraints of the insn are met. Setting a cost of other than

2 will allow reload to verify that the constraints are met. You should do this if the

‘movm’ pattern’s constraints do not allow such copying.

MEMORY_MOVE_COST (m)

A C expression for the cost of moving data of mode m between a register and memory.

A value of 2 is the default; this cost is relative to those in REGISTER_MOVE_COST.

If moving between registers and memory is more expensive than between two registers,

you should define this macro to express the relative cost.

BRANCH_COST

A C expression for the cost of a branch instruction. A value of 1 is the default; other

values are interpreted relative to that.

Here are additional macros which do not specify precise relative costs, but only that certain

actions are more expensive than GNU CC would ordinarily expect.

322 Using and Porting GNU CC

SLOW_BYTE_ACCESS

Define this macro as a C expression which is nonzero if accessing less than a word of

memory (i.e. a char or a short) is no faster than accessing a word of memory, i.e., if

such access require more than one instruction or if there is no difference in cost between

byte and (aligned) word loads.

When this macro is not defined, the compiler will access a field by finding the smallest

containing object; when it is defined, a fullword load will be used if alignment permits.

Unless bytes accesses are faster than word accesses, using word accesses is preferable

since it may eliminate subsequent memory access if subsequent accesses occur to other

fields in the same word of the structure, but to different bytes.

SLOW_ZERO_EXTEND

Define this macro if zero-extension (of a char or short to an int) can be done faster

if the destination is a register that is known to be zero.

If you define this macro, you must have instruction patterns that recognize RTL struc-

tures like this:

(set (strict_low_part (subreg:QI (reg:SI . . .) 0)) . . .)

and likewise for HImode.

SLOW_UNALIGNED_ACCESS

Define this macro to be the value 1 if unaligned accesses have a cost many times greater

than aligned accesses, for example if they are emulated in a trap handler.

When this macro is non-zero, the compiler will act as if STRICT_ALIGNMENT were non-

zero when generating code for block moves. This can cause significantly more instruc-

tions to be produced. Therefore, do not set this macro non-zero if unaligned accesses

only add a cycle or two to the time for a memory access.

If the value of this macro is always zero, it need not be defined.

DONT_REDUCE_ADDR

Define this macro to inhibit strength reduction of memory addresses. (On some ma-

chines, such strength reduction seems to do harm rather than good.)

MOVE_RATIO

The number of scalar move insns which should be generated instead of a string move

insn or a library call. Increasing the value will always make code faster, but eventually

incurs high cost in increased code size.

If you don’t define this, a reasonable default is used.

NO_FUNCTION_CSE

Define this macro if it is as good or better to call a constant function address than to

call an address kept in a register.

Chapter 14: Target Description Macros 323

NO_RECURSIVE_FUNCTION_CSE

Define this macro if it is as good or better for a function to call itself with an explicit

address than to call an address kept in a register.

ADJUST_COST (insn, link, dep insn, cost)

A C statement (sans semicolon) to update the integer variable cost based on the re-

lationship between insn that is dependent on dep insn through the dependence link.

The default is to make no adjustment to cost. This can be used for example to specify

to the scheduler that an output- or anti-dependence does not incur the same cost as a

data-dependence.

14.14 Dividing the Output into Sections (Texts, Data, . . .)

An object file is divided into sections containing different types of data. In the most common

case, there are three sections: the text section, which holds instructions and read-only data; the

data section, which holds initialized writable data; and the bss section, which holds uninitialized

data. Some systems have other kinds of sections.

The compiler must tell the assembler when to switch sections. These macros control what

commands to output to tell the assembler this. You can also define additional sections.

TEXT_SECTION_ASM_OP

A C expression whose value is a string containing the assembler operation that should

precede instructions and read-only data. Normally ".text" is right.

DATA_SECTION_ASM_OP

A C expression whose value is a string containing the assembler operation to identify

the following data as writable initialized data. Normally ".data" is right.

SHARED_SECTION_ASM_OP

if defined, a C expression whose value is a string containing the assembler operation to

identify the following data as shared data. If not defined, DATA_SECTION_ASM_OP will

be used.

INIT_SECTION_ASM_OP

if defined, a C expression whose value is a string containing the assembler operation to

identify the following data as initialization code. If not defined, GNU CC will assume

such a section does not exist.

324 Using and Porting GNU CC

EXTRA_SECTIONS

A list of names for sections other than the standard two, which are in_text and

in_data. You need not define this macro on a system with no other sections (that

GCC needs to use).

EXTRA_SECTION_FUNCTIONS

One or more functions to be defined in ‘varasm.c’. These functions should do jobs

analogous to those of text_section and data_section, for your additional sections.

Do not define this macro if you do not define EXTRA_SECTIONS.

READONLY_DATA_SECTION

On most machines, read-only variables, constants, and jump tables are placed in the

text section. If this is not the case on your machine, this macro should be defined to be

the name of a function (either data_section or a function defined in EXTRA_SECTIONS)

that switches to the section to be used for read-only items.

If these items should be placed in the text section, this macro should not be defined.

SELECT_SECTION (exp, reloc)

A C statement or statements to switch to the appropriate section for output of exp.

You can assume that exp is either a VAR_DECL node or a constant of some sort. reloc

indicates whether the initial value of exp requires link-time relocations. Select the

section by calling text_section or one of the alternatives for other sections.

Do not define this macro if you put all read-only variables and constants in the read-

only data section (usually the text section).

SELECT_RTX_SECTION (mode, rtx)

A C statement or statements to switch to the appropriate section for output of rtx in

mode mode. You can assume that rtx is some kind of constant in RTL. The argument

mode is redundant except in the case of a const_int rtx. Select the section by calling

text_section or one of the alternatives for other sections.

Do not define this macro if you put all constants in the read-only data section.

JUMP_TABLES_IN_TEXT_SECTION

Define this macro if jump tables (for tablejump insns) should be output in the text

section, along with the assembler instructions. Otherwise, the readonly data section is

used.

This macro is irrelevant if there is no separate readonly data section.

ENCODE_SECTION_INFO (decl)

Define this macro if references to a symbol must be treated differently depending on

something about the variable or function named by the symbol (such as what section

it is in).

Chapter 14: Target Description Macros 325

The macro definition, if any, is executed immediately after the rtl for decl has been

created and stored in DECL_RTL (decl). The value of the rtl will be a mem whose address

is a symbol_ref.

The usual thing for this macro to do is to record a flag in the symbol_ref (such as

SYMBOL_REF_FLAG) or to store a modified name string in the symbol_ref (if one bit is

not enough information).

STRIP_NAME_ENCODING (var, sym name)

Decode sym name and store the real name part in var, sans the characters that encode

section info. Define this macro if ENCODE_SECTION_INFO alters the symbol’s name

string.

14.15 Position Independent Code

This section describes macros that help implement generation of position independent code.

Simply defining these macros is not enough to generate valid PIC; you must also add support to

the macros GO_IF_LEGITIMATE_ADDRESS and LEGITIMIZE_ADDRESS, and PRINT_OPERAND_ADDRESS

as well. You must modify the definition of ‘movsi’ to do something appropriate when the source

operand contains a symbolic address. You may also need to alter the handling of switch statements

so that they use relative addresses.

PIC_OFFSET_TABLE_REGNUM

The register number of the register used to address a table of static data addresses

in memory. In some cases this register is defined by a processor’s “application binary

interface” (ABI). When this macro is defined, RTL is generated for this register once,

as with the stack pointer and frame pointer registers. If this macro is not defined, it is

up to the machine-dependent files to allocate such a register (if necessary).

FINALIZE_PIC

By generating position-independent code, when two different programs (A and B) share

a common library (libC.a), the text of the library can be shared whether or not the

library is linked at the same address for both programs. In some of these environments,

position-independent code requires not only the use of different addressing modes, but

also special code to enable the use of these addressing modes.

The FINALIZE_PICmacro serves as a hook to emit these special codes once the function

is being compiled into assembly code, but not before. (It is not done before, because

in the case of compiling an inline function, it would lead to multiple PIC prologues

being included in functions which used inline functions and were compiled to assembly

language.)

326 Using and Porting GNU CC

LEGITIMATE_PIC_OPERAND_P (x)

A C expression that is nonzero if x is a legitimate immediate operand on the target

machine when generating position independent code. You can assume that x satisfies

CONSTANT_P, so you need not check this. You can also assume flag pic is true, so you

need not check it either. You need not define this macro if all constants (including

SYMBOL_REF) can be immediate operands when generating position independent code.

14.16 Defining the Output Assembler Language

This section describes macros whose principal purpose is to describe how to write instructions

in assembler language–rather than what the instructions do.

14.16.1 The Overall Framework of an Assembler File

ASM_FILE_START (stream)

A C expression which outputs to the stdio stream stream some appropriate text to go

at the start of an assembler file.

Normally this macro is defined to output a line containing ‘#NO_APP’, which is a com-

ment that has no effect on most assemblers but tells the GNU assembler that it can

save time by not checking for certain assembler constructs.

On systems that use SDB, it is necessary to output certain commands; see ‘attasm.h’.

ASM_FILE_END (stream)

A C expression which outputs to the stdio stream stream some appropriate text to go

at the end of an assembler file.

If this macro is not defined, the default is to output nothing special at the end of the

file. Most systems don’t require any definition.

On systems that use SDB, it is necessary to output certain commands; see ‘attasm.h’.

ASM_IDENTIFY_GCC (file)

A C statement to output assembler commands which will identify the object file as

having been compiled with GNU CC (or another GNU compiler).

If you don’t define this macro, the string ‘gcc_compiled.:’ is output. This string is

calculated to define a symbol which, on BSD systems, will never be defined for any

other reason. GDB checks for the presence of this symbol when reading the symbol

table of an executable.

Chapter 14: Target Description Macros 327

On non-BSD systems, you must arrange communication with GDB in some other fash-

ion. If GDB is not used on your system, you can define this macro with an empty

body.

ASM_COMMENT_START

A C string constant describing how to begin a comment in the target assembler lan-

guage. The compiler assumes that the comment will end at the end of the line.

ASM_APP_ON

A C string constant for text to be output before each asm statement or group of

consecutive ones. Normally this is "#APP", which is a comment that has no effect on

most assemblers but tells the GNU assembler that it must check the lines that follow

for all valid assembler constructs.

ASM_APP_OFF

A C string constant for text to be output after each asm statement or group of con-

secutive ones. Normally this is "#NO_APP", which tells the GNU assembler to resume

making the time-saving assumptions that are valid for ordinary compiler output.

ASM_OUTPUT_SOURCE_FILENAME (stream, name)

A C statement to output COFF information or DWARF debugging information which

indicates that filename name is the current source file to the stdio stream stream.

This macro need not be defined if the standard form of output for the file format in

use is appropriate.

ASM_OUTPUT_SOURCE_LINE (stream, line)

A C statement to output DBX or SDB debugging information before code for line

number line of the current source file to the stdio stream stream.

This macro need not be defined if the standard form of debugging information for the

debugger in use is appropriate.

ASM_OUTPUT_IDENT (stream, string)

A C statement to output something to the assembler file to handle a ‘#ident’ directive

containing the text string. If this macro is not defined, nothing is output for a ‘#ident’

directive.

OBJC_PROLOGUE

A C statement to output any assembler statements which are required to precede any

Objective C object definitions or message sending. The statement is executed only

when compiling an Objective C program.

14.16.2 Output of Data

328 Using and Porting GNU CC

ASM_OUTPUT_LONG_DOUBLE (stream, value)

ASM_OUTPUT_DOUBLE (stream, value)

ASM_OUTPUT_FLOAT (stream, value)

A C statement to output to the stdio stream stream an assembler instruction to assem-

ble a floating-point constant of TFmode, DFmode or SFmode, respectively, whose value is

value. value will be a C expression of type REAL_VALUE__TYPE, usually double.

ASM_OUTPUT_QUADRUPLE_INT (stream, exp)

ASM_OUTPUT_DOUBLE_INT (stream, exp)

ASM_OUTPUT_INT (stream, exp)

ASM_OUTPUT_SHORT (stream, exp)

ASM_OUTPUT_CHAR (stream, exp)

A C statement to output to the stdio stream stream an assembler instruction to as-

semble an integer of 16, 8, 4, 2 or 1 bytes, respectively, whose value is value. The

argument exp will be an RTL expression which represents a constant value. Use

‘output_addr_const (stream, exp)’ to output this value as an assembler expression.

For sizes larger than UNITS_PER_WORD, if the action of a macro would be identical to

repeatedly calling the macro corresponding to a size of UNITS_PER_WORD, once for each

word, you need not define the macro.

ASM_OUTPUT_BYTE (stream, value)

A C statement to output to the stdio stream stream an assembler instruction to as-

semble a single byte containing the number value.

ASM_BYTE_OP

A C string constant giving the pseudo-op to use for a sequence of single-byte constants.

If this macro is not defined, the default is "byte".

ASM_OUTPUT_ASCII (stream, ptr, len)

A C statement to output to the stdio stream stream an assembler instruction to as-

semble a string constant containing the len bytes at ptr. ptr will be a C expression of

type char * and len a C expression of type int.

If the assembler has a .ascii pseudo-op as found in the Berkeley Unix assembler, do

not define the macro ASM_OUTPUT_ASCII.

ASM_OUTPUT_POOL_PROLOGUE (file funname fundecl size)

A C statement to output assembler commands to define the start of the constant pool

for a function. funname is a string giving the name of the function. Should the return

type of the function be required, it can be obtained via fundecl. size is the size, in

bytes, of the constant pool that will be written immediately after this call.

If no constant-pool prefix is required, the usual case, this macro need not be defined.

Chapter 14: Target Description Macros 329

ASM_OUTPUT_SPECIAL_POOL_ENTRY (file, x, mode, align, labelno, jumpto)

A C statement (with or without semicolon) to output a constant in the constant pool,

if it needs special treatment. (This macro need not do anything for RTL expressions

that can be output normally.)

The argument file is the standard I/O stream to output the assembler code on. x is

the RTL expression for the constant to output, and mode is the machine mode (in case

x is a ‘const_int’). align is the required alignment for the value x; you should output

an assembler directive to force this much alignment.

The argument labelno is a number to use in an internal label for the address of this pool

entry. The definition of this macro is responsible for outputting the label definition at

the proper place. Here is how to do this:

ASM_OUTPUT_INTERNAL_LABEL (file, "LC", labelno);

When you output a pool entry specially, you should end with a goto to the label

jumpto. This will prevent the same pool entry from being output a second time in the

usual manner.

You need not define this macro if it would do nothing.

ASM_OPEN_PAREN

ASM_CLOSE_PAREN

These macros are defined as C string constant, describing the syntax in the assembler

for grouping arithmetic expressions. The following definitions are correct for most

assemblers:

#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"

14.16.3 Output of Uninitialized Variables

Each of the macros in this section is used to do the whole job of outputting a single uninitialized

variable.

ASM_OUTPUT_COMMON (stream, name, size, rounded)

A C statement (sans semicolon) to output to the stdio stream stream the assembler

definition of a common-label named name whose size is size bytes. The variable rounded

is the size rounded up to whatever alignment the caller wants.

Use the expression assemble_name (stream, name) to output the name itself; before

and after that, output the additional assembler syntax for defining the name, and a

newline.

330 Using and Porting GNU CC

This macro controls how the assembler definitions of uninitialized global variables are

output.

ASM_OUTPUT_ALIGNED_COMMON (stream, name, size, alignment)

Like ASM_OUTPUT_COMMON except takes the required alignment as a separate, explicit

argument. If you define this macro, it is used in place of ASM_OUTPUT_COMMON, and

gives you more flexibility in handling the required alignment of the variable.

ASM_OUTPUT_SHARED_COMMON (stream, name, size, rounded)

If defined, it is similar to ASM_OUTPUT_COMMON, except that it is used when name is

shared. If not defined, ASM_OUTPUT_COMMON will be used.

ASM_OUTPUT_LOCAL (stream, name, size, rounded)

A C statement (sans semicolon) to output to the stdio stream stream the assembler

definition of a local-common-label named name whose size is size bytes. The variable

rounded is the size rounded up to whatever alignment the caller wants.

Use the expression assemble_name (stream, name) to output the name itself; before

and after that, output the additional assembler syntax for defining the name, and a

newline.

This macro controls how the assembler definitions of uninitialized static variables are

output.

ASM_OUTPUT_ALIGNED_LOCAL (stream, name, size, alignment)

Like ASM_OUTPUT_LOCAL except takes the required alignment as a separate, explicit

argument. If you define this macro, it is used in place of ASM_OUTPUT_LOCAL, and gives

you more flexibility in handling the required alignment of the variable.

ASM_OUTPUT_SHARED_LOCAL (stream, name, size, rounded)

If defined, it is similar to ASM_OUTPUT_LOCAL, except that it is used when name is

shared. If not defined, ASM_OUTPUT_LOCAL will be used.

14.16.4 Output and Generation of Labels

ASM_OUTPUT_LABEL (stream, name)

A C statement (sans semicolon) to output to the stdio stream stream the assembler

definition of a label named name. Use the expression assemble_name (stream, name)

to output the name itself; before and after that, output the additional assembler syntax

for defining the name, and a newline.

ASM_DECLARE_FUNCTION_NAME (stream, name, decl)

A C statement (sans semicolon) to output to the stdio stream stream any text necessary

for declaring the name name of a function which is being defined. This macro is

Chapter 14: Target Description Macros 331

responsible for outputting the label definition (perhaps using ASM_OUTPUT_LABEL). The

argument decl is the FUNCTION_DECL tree node representing the function.

If this macro is not defined, then the function name is defined in the usual manner as

a label (by means of ASM_OUTPUT_LABEL).

ASM_DECLARE_FUNCTION_SIZE (stream, name, decl)

A C statement (sans semicolon) to output to the stdio stream stream any text necessary

for declaring the size of a function which is being defined. The argument name is the

name of the function. The argument decl is the FUNCTION_DECL tree node representing

the function.

If this macro is not defined, then the function size is not defined.

ASM_DECLARE_OBJECT_NAME (stream, name, decl)

A C statement (sans semicolon) to output to the stdio stream stream any text nec-

essary for declaring the name name of an initialized variable which is being defined.

This macro must output the label definition (perhaps using ASM_OUTPUT_LABEL). The

argument decl is the VAR_DECL tree node representing the variable.

If this macro is not defined, then the variable name is defined in the usual manner as

a label (by means of ASM_OUTPUT_LABEL).

ASM_GLOBALIZE_LABEL (stream, name)

A C statement (sans semicolon) to output to the stdio stream stream some commands

that will make the label name global; that is, available for reference from other files.

Use the expression assemble_name (stream, name) to output the name itself; before

and after that, output the additional assembler syntax for making that name global,

and a newline.

ASM_OUTPUT_EXTERNAL (stream, decl, name)

A C statement (sans semicolon) to output to the stdio stream stream any text necessary

for declaring the name of an external symbol named name which is referenced in this

compilation but not defined. The value of decl is the tree node for the declaration.

This macro need not be defined if it does not need to output anything. The GNU

assembler and most Unix assemblers don’t require anything.

ASM_OUTPUT_EXTERNAL_LIBCALL (stream, symref)

A C statement (sans semicolon) to output on stream an assembler pseudo-op to declare

a library function name external. The name of the library function is given by symref,

which has type rtx and is a symbol_ref.

This macro need not be defined if it does not need to output anything. The GNU

assembler and most Unix assemblers don’t require anything.

ASM_OUTPUT_LABELREF (stream, name)

A C statement (sans semicolon) to output to the stdio stream stream a reference in

assembler syntax to a label named name. This should add ‘_’ to the front of the name,

332 Using and Porting GNU CC

if that is customary on your operating system, as it is in most Berkeley Unix systems.

This macro is used in assemble_name.

ASM_OUTPUT_LABELREF_AS_INT (file, label)

Define this macro for systems that use the program collect2. The definition should

be a C statement to output a word containing a reference to the label label.

ASM_OUTPUT_INTERNAL_LABEL (stream, prefix, num)

A C statement to output to the stdio stream stream a label whose name is made from

the string prefix and the number num.

It is absolutely essential that these labels be distinct from the labels used for user-level

functions and variables. Otherwise, certain programs will have name conflicts with

internal labels.

It is desirable to exclude internal labels from the symbol table of the object file. Most

assemblers have a naming convention for labels that should be excluded; on many

systems, the letter ‘L’ at the beginning of a label has this effect. You should find out

what convention your system uses, and follow it.

The usual definition of this macro is as follows:

fprintf (stream, "L%s%d:\n", prefix, num)

ASM_GENERATE_INTERNAL_LABEL (string, prefix, num)

A C statement to store into the string string a label whose name is made from the

string prefix and the number num.

This string, when output subsequently by assemble_name, should produce the same

output that ASM_OUTPUT_INTERNAL_LABEL would produce with the same prefix and

num.

If the string begins with ‘*’, then assemble_name will output the rest of the string

unchanged. It is often convenient for ASM_GENERATE_INTERNAL_LABEL to use ‘*’ in this

way. If the string doesn’t start with ‘*’, then ASM_OUTPUT_LABELREF gets to output

the string, and may change it. (Of course, ASM_OUTPUT_LABELREF is also part of your

machine description, so you should know what it does on your machine.)

ASM_FORMAT_PRIVATE_NAME (outvar, name, number)

A C expression to assign to outvar (which is a variable of type char *) a newly allo-

cated string made from the string name and the number number, with some suitable

punctuation added. Use alloca to get space for the string.

This string will be used as the argument to ASM_OUTPUT_LABELREF to produce an

assembler label for an internal static variable whose name is name. Therefore, the string

must be such as to result in valid assembler code. The argument number is different

each time this macro is executed; it prevents conflicts between similarly-named internal

static variables in different scopes.

Chapter 14: Target Description Macros 333

Ideally this string should not be a valid C identifier, to prevent any conflict with

the user’s own symbols. Most assemblers allow periods or percent signs in assembler

symbols; putting at least one of these between the name and the number will suffice.

OBJC_GEN_METHOD_LABEL (buf, is inst, class name, cat name, sel name)

Define this macro to override the default assembler names used for Objective C meth-

ods.

The default name is a unique method number followed by the name of the class (e.g.

‘_1_Foo’). For methods in categories, the name of the category is also included in the

assembler name (e.g. ‘_1_Foo_Bar’).

These names are safe on most systems, but make debugging difficult since the method’s

selector is not present in the name. Therefore, particular systems define other ways of

computing names.

buf is an expression of type char * which gives you a buffer in which to store the

name; its length is as long as class name, cat name and sel name put together, plus 50

characters extra.

The argument is inst specifies whether the method is an instance method or a class

method; class name is the name of the class; cat name is the name of the category (or

NULL if the method is not in a category); and sel name is the name of the selector.

On systems where the assembler can handle quoted names, you can use this macro to

provide more human-readable names.

14.16.5 How Initialization Functions Are Handled

The compiled code for certain languages includes constructors (also called initialization rou-

tines)—functions to initialize data in the program when the program is started. These functions

need to be called before the program is “started”—that is to say, before main is called.

Compiling some languages generates destructors (also called termination routines) that should

be called when the program terminates.

To make the initialization and termination functions work, the compiler must output something

in the assembler code to cause those functions to be called at the appropriate time. When you port

the compiler to a new system, you need to specify how to do this.

There are two major ways that GCC currently supports the execution of initialization and

termination functions. Each way has two variants. Much of the structure is common to all four

variations.

334 Using and Porting GNU CC

The linker must build two lists of these functions—a list of initialization functions, called

__CTOR_LIST__, and a list of termination functions, called __DTOR_LIST__.

Each list always begins with an ignored function pointer (which may hold 0, −1, or a count of

the function pointers after it, depending on the environment). This is followed by a series of zero or

more function pointers to constructors (or destructors), followed by a function pointer containing

zero.

Depending on the operating system and its executable file format, either ‘crtstuff.c’ or

‘libgcc2.c’ traverses these lists at startup time and exit time. Constructors are called in for-

ward order of the list; destructors in reverse order.

The best way to handle static constructors works only for object file formats which provide

arbitrarily-named sections. A section is set aside for a list of constructors, and another for a list of

destructors. Traditionally these are called ‘.ctors’ and ‘.dtors’. Each object file that defines an

initialization function also puts a word in the constructor section to point to that function. The

linker accumulates all these words into one contiguous ‘.ctors’ section. Termination functions are

handled similarly.

To use this method, you need appropriate definitions of the macros ASM_OUTPUT_CONSTRUCTOR

and ASM_OUTPUT_DESTRUCTOR. Usually you can get them by including ‘svr4.h’.

When arbitrary sections are available, there are two variants, depending upon how the code

in ‘crtstuff.c’ is called. On systems that support an init section which is executed at program

startup, parts of ‘crtstuff.c’ are compiled into that section. The program is linked by the gcc

driver like this:

ld -o output file crtbegin.o . . . crtend.o -lgcc

The head of a function (__do_global_ctors) appears in the init section of ‘crtbegin.o’; the

remainder of the function appears in the init section of ‘crtend.o’. The linker will pull these

two parts of the section together, making a whole function. If any of the user’s object files linked

into the middle of it contribute code, then that code will be executed as part of the body of

__do_global_ctors.

To use this variant, you must define the INIT_SECTION_ASM_OP macro properly.

Chapter 14: Target Description Macros 335

If no init section is available, do not define INIT_SECTION_ASM_OP. Then __do_global_ctors

is built into the text section like all other functions, and resides in ‘libgcc.a’. When GCC

compiles any function called main, it inserts a procedure call to __main as the first executable

code after the function prologue. The __main function, also defined in ‘libgcc2.c’, simply calls

‘__do_global_ctors’.

In file formats that don’t support arbitrary sections, there are again two variants. In the

simplest variant, the GNU linker (GNU ld) and an ‘a.out’ format must be used. In this case,

ASM_OUTPUT_CONSTRUCTOR is defined to produce a .stabs entry of type ‘N_SETT’, referencing the

name __CTOR_LIST__, and with the address of the void function containing the initialization code

as its value. The GNU linker recognizes this as a request to add the value to a “set”; the values

are accumulated, and are eventually placed in the executable as a vector in the format described

above, with a leading (ignored) count and a trailing zero element. ASM_OUTPUT_DESTRUCTOR is

handled similarly. Since no init section is available, the absence of INIT_SECTION_ASM_OP causes

the compilation of main to call __main as above, starting the initialization process.

The last variant uses neither arbitrary sections nor the GNU linker. This is preferable when you

want to do dynamic linking and when using file formats which the GNU linker does not support,

such as ‘ECOFF’. In this case, ASM_OUTPUT_CONSTRUCTOR does not produce an N_SETT symbol;

initialization and termination functions are recognized simply by their names. This requires an

extra program in the linkage step, called collect2. This program pretends to be the linker, for

use with GNU CC; it does its job by running the ordinary linker, but also arranges to include

the vectors of initialization and termination functions. These functions are called via __main as

described above.

Choosing among these configuration options has been simplified by a set of operating-system-

dependent files in the ‘config’ subdirectory. These files define all of the relevant parameters.

Usually it is sufficient to include one into your specific machine-dependent configuration file. These

files are:

‘aoutos.h’

For operating systems using the ‘a.out’ format.

‘next.h’ For operating systems using the ‘MachO’ format.

‘svr3.h’ For System V Release 3 and similar systems using ‘COFF’ format.

‘svr4.h’ For System V Release 4 and similar systems using ‘ELF’ format.

‘vms.h’ For the VMS operating system.

336 Using and Porting GNU CC

14.16.6 Macros Controlling Initialization Routines

Here are the macros that control how the compiler handles initialization and termination func-

tions:

INIT_SECTION_ASM_OP

If defined, a C string constant for the assembler operation to identify the following data

as initialization code. If not defined, GNU CC will assume such a section does not exist.

When you are using special sections for initialization and termination functions, this

macro also controls how ‘crtstuff.c’ and ‘libgcc2.c’ arrange to run the initialization

functions.

ASM_OUTPUT_CONSTRUCTOR (stream, name)

Define this macro as a C statement to output on the stream stream the assembler code

to arrange to call the function named name at initialization time.

Assume that name is the name of a C function generated automatically by the compiler.

This function takes no arguments. Use the function assemble_name to output the name

name; this performs any system-specific syntactic transformations such as adding an

underscore.

If you don’t define this macro, nothing special is output to arrange to call the function.

This is correct when the function will be called in some other manner—for example, by

means of the collect2 program, which looks through the symbol table to find these

functions by their names. If you want to use collect2, then you need to arrange for

it to be built and installed and used on your system.

ASM_OUTPUT_DESTRUCTOR (stream, name)

This is like ASM_OUTPUT_CONSTRUCTOR but used for termination functions rather than

initialization functions.

If your system uses collect2 as the means of processing constructors, then that program nor-

mally uses nm to scan an object file for constructor functions to be called. On certain kinds of

systems, you can define these macros to make collect2 work faster (and, in some cases, make it

work at all):

OBJECT_FORMAT_COFF

Define this macro if the system uses COFF (Common Object File Format) object files,

so that collect2 can assume this format and scan object files directly for dynamic

constructor/destructor functions.

Chapter 14: Target Description Macros 337

OBJECT_FORMAT_ROSE

Define this macro if the system uses ROSE format object files, so that collect2 can

assume this format and scan object files directly for dynamic constructor/destructor

functions.

These macros are effective only in a native compiler; collect2 as part of a cross compiler always

uses nm.

REAL_NM_FILE_NAME

Define this macro as a C string constant containing the file name to use to execute nm.

The default is to search the path normally for nm.

14.16.7 Output of Assembler Instructions

REGISTER_NAMES

A C initializer containing the assembler’s names for the machine registers, each one

as a C string constant. This is what translates register numbers in the compiler into

assembler language.

ADDITIONAL_REGISTER_NAMES

If defined, a C initializer for an array of structures containing a name and a register

number. This macro defines additional names for hard registers, thus allowing the asm

option in declarations to refer to registers using alternate names.

ASM_OUTPUT_OPCODE (stream, ptr)

Define this macro if you are using an unusual assembler that requires different names

for the machine instructions.

The definition is a C statement or statements which output an assembler instruction

opcode to the stdio stream stream. The macro-operand ptr is a variable of type char

* which points to the opcode name in its “internal” form—the form that is written

in the machine description. The definition should output the opcode name to stream,

performing any translation you desire, and increment the variable ptr to point at the

end of the opcode so that it will not be output twice.

In fact, your macro definition may process less than the entire opcode name, or more

than the opcode name; but if you want to process text that includes ‘%’-sequences to

substitute operands, you must take care of the substitution yourself. Just be sure to

increment ptr over whatever text should not be output normally.

338 Using and Porting GNU CC

If you need to look at the operand values, they can be found as the elements of

recog_operand.

If the macro definition does nothing, the instruction is output in the usual way.

FINAL_PRESCAN_INSN (insn, opvec, noperands)

If defined, a C statement to be executed just prior to the output of assembler code for

insn, to modify the extracted operands so they will be output differently.

Here the argument opvec is the vector containing the operands extracted from insn,

and noperands is the number of elements of the vector which contain meaningful data

for this insn. The contents of this vector are what will be used to convert the insn

template into assembler code, so you can change the assembler output by changing the

contents of the vector.

This macro is useful when various assembler syntaxes share a single file of instruction

patterns; by defining this macro differently, you can cause a large class of instructions

to be output differently (such as with rearranged operands). Naturally, variations in

assembler syntax affecting individual insn patterns ought to be handled by writing

conditional output routines in those patterns.

If this macro is not defined, it is equivalent to a null statement.

PRINT_OPERAND (stream, x, code)

A C compound statement to output to stdio stream stream the assembler syntax for

an instruction operand x. x is an RTL expression.

code is a value that can be used to specify one of several ways of printing the operand.

It is used when identical operands must be printed differently depending on the context.

code comes from the ‘%’ specification that was used to request printing of the operand.

If the specification was just ‘%digit’ then code is 0; if the specification was ‘%ltr digit’

then code is the ASCII code for ltr.

If x is a register, this macro should print the register’s name. The names can be

found in an array reg_names whose type is char *[]. reg_names is initialized from

REGISTER_NAMES.

When the machine description has a specification ‘%punct’ (a ‘%’ followed by a punc-

tuation character), this macro is called with a null pointer for x and the punctuation

character for code.

PRINT_OPERAND_PUNCT_VALID_P (code)

A C expression which evaluates to true if code is a valid punctuation character for

use in the PRINT_OPERAND macro. If PRINT_OPERAND_PUNCT_VALID_P is not defined,

it means that no punctuation characters (except for the standard one, ‘%’) are used in

this way.

Chapter 14: Target Description Macros 339

PRINT_OPERAND_ADDRESS (stream, x)

A C compound statement to output to stdio stream stream the assembler syntax for

an instruction operand that is a memory reference whose address is x. x is an RTL

expression.

On some machines, the syntax for a symbolic address depends on the section that the

address refers to. On these machines, define the macro ENCODE_SECTION_INFO to store

the information into the symbol_ref, and then check for it here. See Section 14.16

[Assembler Format], page 326.

DBR_OUTPUT_SEQEND(file)

A C statement, to be executed after all slot-filler instructions have been output. If nec-

essary, call dbr_sequence_length to determine the number of slots filled in a sequence

(zero if not currently outputting a sequence), to decide how many no-ops to output, or

whatever.

Don’t define this macro if it has nothing to do, but it is helpful in reading assembly

output if the extent of the delay sequence is made explicit (e.g. with white space).

Note that output routines for instructions with delay slots must be prepared to deal

with not being output as part of a sequence (i.e. when the scheduling pass is not run,

or when no slot fillers could be found.) The variable final_sequence is null when not

processing a sequence, otherwise it contains the sequence rtx being output.

REGISTER_PREFIX

LOCAL_LABEL_PREFIX

USER_LABEL_PREFIX

IMMEDIATE_PREFIX

If defined, C string expressions to be used for the ‘%R’, ‘%L’, ‘%U’, and ‘%I’ options of

asm_fprintf (see ‘final.c’). These are useful when a single ‘md’ file must support

multiple assembler formats. In that case, the various ‘tm.h’ files can define these macros

differently.

ASM_OUTPUT_REG_PUSH (stream, regno)

A C expression to output to stream some assembler code which will push hard register

number regno onto the stack. The code need not be optimal, since this macro is used

only when profiling.

ASM_OUTPUT_REG_POP (stream, regno)

A C expression to output to stream some assembler code which will pop hard register

number regno off of the stack. The code need not be optimal, since this macro is used

only when profiling.

14.16.8 Output of Dispatch Tables

340 Using and Porting GNU CC

ASM_OUTPUT_ADDR_DIFF_ELT (stream, value, rel)

This macro should be provided on machines where the addresses in a dispatch table

are relative to the table’s own address.

The definition should be a C statement to output to the stdio stream stream an as-

sembler pseudo-instruction to generate a difference between two labels. value and rel

are the numbers of two internal labels. The definitions of these labels are output using

ASM_OUTPUT_INTERNAL_LABEL, and they must be printed in the same way here. For

example,

fprintf (stream, "\t.word L%d-L%d\n",
value, rel)

ASM_OUTPUT_ADDR_VEC_ELT (stream, value)

This macro should be provided on machines where the addresses in a dispatch table

are absolute.

The definition should be a C statement to output to the stdio stream stream an as-

sembler pseudo-instruction to generate a reference to a label. value is the number of

an internal label whose definition is output using ASM_OUTPUT_INTERNAL_LABEL. For

example,

fprintf (stream, "\t.word L%d\n", value)

ASM_OUTPUT_CASE_LABEL (stream, prefix, num, table)

Define this if the label before a jump-table needs to be output specially. The first three

arguments are the same as for ASM_OUTPUT_INTERNAL_LABEL; the fourth argument is

the jump-table which follows (a jump_insn containing an addr_vec or addr_diff_vec).

This feature is used on system V to output a swbeg statement for the table.

If this macro is not defined, these labels are output with ASM_OUTPUT_INTERNAL_LABEL.

ASM_OUTPUT_CASE_END (stream, num, table)

Define this if something special must be output at the end of a jump-table. The

definition should be a C statement to be executed after the assembler code for the

table is written. It should write the appropriate code to stdio stream stream. The

argument table is the jump-table insn, and num is the label-number of the preceding

label.

If this macro is not defined, nothing special is output at the end of the jump-table.

14.16.9 Assembler Commands for Alignment

ASM_OUTPUT_ALIGN_CODE (file)

A C expression to output text to align the location counter in the way that is desirable

at a point in the code that is reached only by jumping.

Chapter 14: Target Description Macros 341

This macro need not be defined if you don’t want any special alignment to be done at

such a time. Most machine descriptions do not currently define the macro.

ASM_OUTPUT_LOOP_ALIGN (file)

A C expression to output text to align the location counter in the way that is desirable

at the beginning of a loop.

This macro need not be defined if you don’t want any special alignment to be done at

such a time. Most machine descriptions do not currently define the macro.

ASM_OUTPUT_SKIP (stream, nbytes)

A C statement to output to the stdio stream stream an assembler instruction to advance

the location counter by nbytes bytes. Those bytes should be zero when loaded. nbytes

will be a C expression of type int.

ASM_NO_SKIP_IN_TEXT

Define this macro if ASM_OUTPUT_SKIP should not be used in the text section because

it fails put zeros in the bytes that are skipped. This is true on many Unix systems,

where the pseudo–op to skip bytes produces no-op instructions rather than zeros when

used in the text section.

ASM_OUTPUT_ALIGN (stream, power)

A C statement to output to the stdio stream stream an assembler command to advance

the location counter to a multiple of 2 to the power bytes. power will be a C expression

of type int.

14.17 Controlling Debugging Information Format

14.17.1 Macros Affecting All Debugging Formats

DBX_REGISTER_NUMBER (regno)

A C expression that returns the DBX register number for the compiler register number

regno. In simple cases, the value of this expression may be regno itself. But sometimes

there are some registers that the compiler knows about and DBX does not, or vice

versa. In such cases, some register may need to have one number in the compiler and

another for DBX.

If two registers have consecutive numbers inside GNU CC, and they can be used as a

pair to hold a multiword value, then they must have consecutive numbers after renum-

bering with DBX_REGISTER_NUMBER. Otherwise, debuggers will be unable to access

such a pair, because they expect register pairs to be consecutive in their own number-

ing scheme.

342 Using and Porting GNU CC

If you find yourself defining DBX_REGISTER_NUMBER in way that does not preserve reg-

ister pairs, then what you must do instead is redefine the actual register numbering

scheme.

DEBUGGER_AUTO_OFFSET (x)

A C expression that returns the integer offset value for an automatic variable having

address x (an RTL expression). The default computation assumes that x is based on

the frame-pointer and gives the offset from the frame-pointer. This is required for

targets that produce debugging output for DBX or COFF-style debugging output for

SDB and allow the frame-pointer to be eliminated when the ‘-g’ options is used.

DEBUGGER_ARG_OFFSET (offset, x)

A C expression that returns the integer offset value for an argument having address x

(an RTL expression). The nominal offset is offset.

14.17.2 Specific Options for DBX Output

DBX_DEBUGGING_INFO

Define this macro if GNU CC should produce debugging output for DBX in response

to the ‘-g’ option.

XCOFF_DEBUGGING_INFO

Define this macro if GNU CC should produce XCOFF format debugging output in

response to the ‘-g’ option. This is a variant of DBX format.

DEFAULT_GDB_EXTENSIONS

Define this macro to control whether GNU CC should by default generate GDB’s

extended version of DBX debugging information (assuming DBX-format debugging

information is enabled at all). If you don’t define the macro, the default is 1: always

generate the extended information if there is any occasion to.

DEBUG_SYMS_TEXT

Define this macro if all .stabs commands should be output while in the text section.

ASM_STABS_OP

A C string constant naming the assembler pseudo op to use instead of .stabs to define

an ordinary debugging symbol. If you don’t define this macro, .stabs is used. This

macro applies only to DBX debugging information format.

ASM_STABD_OP

A C string constant naming the assembler pseudo op to use instead of .stabd to define

a debugging symbol whose value is the current location. If you don’t define this macro,

.stabd is used. This macro applies only to DBX debugging information format.

Chapter 14: Target Description Macros 343

ASM_STABN_OP

A C string constant naming the assembler pseudo op to use instead of .stabn to define

a debugging symbol with no name. If you don’t define this macro, .stabn is used.

This macro applies only to DBX debugging information format.

DBX_NO_XREFS

Define this macro if DBX on your system does not support the construct ‘xstagname’.

On some systems, this construct is used to describe a forward reference to a structure

named tagname. On other systems, this construct is not supported at all.

DBX_CONTIN_LENGTH

A symbol name in DBX-format debugging information is normally continued (split

into two separate .stabs directives) when it exceeds a certain length (by default,

80 characters). On some operating systems, DBX requires this splitting; on others,

splitting must not be done. You can inhibit splitting by defining this macro with the

value zero. You can override the default splitting-length by defining this macro as an

expression for the length you desire.

DBX_CONTIN_CHAR

Normally continuation is indicated by adding a ‘\’ character to the end of a .stabs

string when a continuation follows. To use a different character instead, define this

macro as a character constant for the character you want to use. Do not define this

macro if backslash is correct for your system.

DBX_STATIC_STAB_DATA_SECTION

Define this macro if it is necessary to go to the data section before outputting the

‘.stabs’ pseudo-op for a non-global static variable.

DBX_TYPE_DECL_STABS_CODE

The value to use in the “code” field of the .stabs directive for a typedef. The default

is N_LSYM.

DBX_STATIC_CONST_VAR_CODE

The value to use in the “code” field of the .stabs directive for a static variable located

in the text section. DBX format does not provide any “right” way to do this. The

default is N_FUN.

DBX_REGPARM_STABS_CODE

The value to use in the “code” field of the .stabs directive for a parameter passed in

registers. DBX format does not provide any “right” way to do this. The default is

N_RSYM.

DBX_REGPARM_STABS_LETTER

The letter to use in DBX symbol data to identify a symbol as a parameter passed in

registers. DBX format does not customarily provide any way to do this. The default

is ’P’.

344 Using and Porting GNU CC

DBX_MEMPARM_STABS_LETTER

The letter to use in DBX symbol data to identify a symbol as a stack parameter. The

default is ’p’.

DBX_FUNCTION_FIRST

Define this macro if the DBX information for a function and its arguments should

precede the assembler code for the function. Normally, in DBX format, the debugging

information entirely follows the assembler code.

DBX_LBRAC_FIRST

Define this macro if the N_LBRAC symbol for a block should precede the debugging

information for variables and functions defined in that block. Normally, in DBX format,

the N_LBRAC symbol comes first.

14.17.3 Open-Ended Hooks for DBX Format

DBX_OUTPUT_LBRAC (stream, name)

Define this macro to say how to output to stream the debugging information for the

start of a scope level for variable names. The argument name is the name of an

assembler symbol (for use with assemble_name) whose value is the address where the

scope begins.

DBX_OUTPUT_RBRAC (stream, name)

Like DBX_OUTPUT_LBRAC, but for the end of a scope level.

DBX_OUTPUT_ENUM (stream, type)

Define this macro if the target machine requires special handling to output an enu-

meration type. The definition should be a C statement (sans semicolon) to output the

appropriate information to stream for the type type.

DBX_OUTPUT_FUNCTION_END (stream, function)

Define this macro if the target machine requires special output at the end of the de-

bugging information for a function. The definition should be a C statement (sans semi-

colon) to output the appropriate information to stream. function is the FUNCTION_DECL

node for the function.

DBX_OUTPUT_STANDARD_TYPES (syms)

Define this macro if you need to control the order of output of the standard data types

at the beginning of compilation. The argument syms is a tree which is a chain of all

the predefined global symbols, including names of data types.

Normally, DBX output starts with definitions of the types for integers and characters,

followed by all the other predefined types of the particular language in no particular

order.

Chapter 14: Target Description Macros 345

On some machines, it is necessary to output different particular types first. To do this,

define DBX_OUTPUT_STANDARD_TYPES to output those symbols in the necessary order.

Any predefined types that you don’t explicitly output will be output afterward in no

particular order.

Be careful not to define this macro so that it works only for C. There are no global

variables to access most of the built-in types, because another language may have

another set of types. The way to output a particular type is to look through syms to

see if you can find it. Here is an example:

{
tree decl;
for (decl = syms; decl; decl = TREE_CHAIN (decl))

if (!strcmp (IDENTIFIER_POINTER (DECL_NAME (decl)), "long int"))
dbxout_symbol (decl);

. . .

}

This does nothing if the expected type does not exist.

See the function init_decl_processing in source file ‘c-decl.c’ to find the names to

use for all the built-in C types.

Here is another way of finding a particular type:

{
tree decl;
for (decl = syms; decl; decl = TREE_CHAIN (decl))

if (TREE_CODE (decl) == TYPE_DECL
&& TREE_CODE (TREE_TYPE (decl)) == INTEGER_CST
&& TYPE_PRECISION (TREE_TYPE (decl)) == 16
&& TYPE_UNSIGNED (TREE_TYPE (decl)))

/* This must be unsigned short. */
dbxout_symbol (decl);

. . .

}

14.17.4 File Names in DBX Format

DBX_WORKING_DIRECTORY

Define this if DBX wants to have the current directory recorded in each object file.

Note that the working directory is always recorded if GDB extensions are enabled.

DBX_OUTPUT_MAIN_SOURCE_FILENAME (stream, name)

A C statement to output DBX debugging information to the stdio stream stream which

indicates that file name is the main source file—the file specified as the input file for

compilation. This macro is called only once, at the beginning of compilation.

346 Using and Porting GNU CC

This macro need not be defined if the standard form of output for DBX debugging

information is appropriate.

DBX_OUTPUT_MAIN_SOURCE_DIRECTORY (stream, name)

A C statement to output DBX debugging information to the stdio stream stream which

indicates that the current directory during compilation is named name.

This macro need not be defined if the standard form of output for DBX debugging

information is appropriate.

DBX_OUTPUT_MAIN_SOURCE_FILE_END (stream, name)

A C statement to output DBX debugging information at the end of compilation of the

main source file name.

If you don’t define this macro, nothing special is output at the end of compilation,

which is correct for most machines.

DBX_OUTPUT_SOURCE_FILENAME (stream, name)

A C statement to output DBX debugging information to the stdio stream stream which

indicates that file name is the current source file. This output is generated each time

input shifts to a different source file as a result of ‘#include’, the end of an included

file, or a ‘#line’ command.

This macro need not be defined if the standard form of output for DBX debugging

information is appropriate.

14.17.5 Macros for SDB and DWARF Output

SDB_DEBUGGING_INFO

Define this macro if GNU CC should produce COFF-style debugging output for SDB

in response to the ‘-g’ option.

DWARF_DEBUGGING_INFO

Define this macro if GNU CC should produce dwarf format debugging output in re-

sponse to the ‘-g’ option.

PUT_SDB_. . .

Define these macros to override the assembler syntax for the special SDB assembler

directives. See ‘sdbout.c’ for a list of these macros and their arguments. If the standard

syntax is used, you need not define them yourself.

SDB_DELIM

Some assemblers do not support a semicolon as a delimiter, even between SDB assem-

bler directives. In that case, define this macro to be the delimiter to use (usually ‘\n’).

It is not necessary to define a new set of PUT_SDB_op macros if this is the only change

required.

Chapter 14: Target Description Macros 347

SDB_GENERATE_FAKE

Define this macro to override the usual method of constructing a dummy name for

anonymous structure and union types. See ‘sdbout.c’ for more information.

SDB_ALLOW_UNKNOWN_REFERENCES

Define this macro to allow references to unknown structure, union, or enumeration tags

to be emitted. Standard COFF does not allow handling of unknown references, MIPS

ECOFF has support for it.

SDB_ALLOW_FORWARD_REFERENCES

Define this macro to allow references to structure, union, or enumeration tags that have

not yet been seen to be handled. Some assemblers choke if forward tags are used, while

some require it.

14.18 Cross Compilation and Floating Point Format

While all modern machines use 2’s complement representation for integers, there are a variety of

representations for floating point numbers. This means that in a cross-compiler the representation

of floating point numbers in the compiled program may be different from that used in the machine

doing the compilation.

Because different representation systems may offer different amounts of range and precision, the

cross compiler cannot safely use the host machine’s floating point arithmetic. Therefore, floating

point constants must be represented in the target machine’s format. This means that the cross

compiler cannot use atof to parse a floating point constant; it must have its own special routine

to use instead. Also, constant folding must emulate the target machine’s arithmetic (or must not

be done at all).

The macros in the following table should be defined only if you are cross compiling between

different floating point formats.

Otherwise, don’t define them. Then default definitions will be set up which use double as the

data type, == to test for equality, etc.

You don’t need to worry about how many times you use an operand of any of these macros.

The compiler never uses operands which have side effects.

348 Using and Porting GNU CC

REAL_VALUE_TYPE

A macro for the C data type to be used to hold a floating point value in the target

machine’s format. Typically this would be a struct containing an array of int.

REAL_VALUES_EQUAL (x, y)

A macro for a C expression which compares for equality the two values, x and y, both

of type REAL_VALUE_TYPE.

REAL_VALUES_LESS (x, y)

A macro for a C expression which tests whether x is less than y, both values be-

ing of type REAL_VALUE_TYPE and interpreted as floating point numbers in the target

machine’s representation.

REAL_VALUE_LDEXP (x, scale)

A macro for a C expression which performs the standard library function ldexp, but

using the target machine’s floating point representation. Both x and the value of the

expression have type REAL_VALUE_TYPE. The second argument, scale, is an integer.

REAL_VALUE_FIX (x)

A macro whose definition is a C expression to convert the target-machine floating point

value x to a signed integer. x has type REAL_VALUE_TYPE.

REAL_VALUE_UNSIGNED_FIX (x)

A macro whose definition is a C expression to convert the target-machine floating point

value x to an unsigned integer. x has type REAL_VALUE_TYPE.

REAL_VALUE_FIX_TRUNCATE (x)

A macro whose definition is a C expression to convert the target-machine floating point

value x to a signed integer, rounding toward 0. x has type REAL_VALUE_TYPE.

REAL_VALUE_UNSIGNED_FIX_TRUNCATE (x)

A macro whose definition is a C expression to convert the target-machine floating point

value x to an unsigned integer, rounding toward 0. x has type REAL_VALUE_TYPE.

REAL_VALUE_ATOF (string)

A macro for a C expression which converts string, an expression of type char *, into

a floating point number in the target machine’s representation. The value has type

REAL_VALUE_TYPE.

REAL_INFINITY

Define this macro if infinity is a possible floating point value, and therefore division by

0 is legitimate.

REAL_VALUE_ISINF (x)

A macro for a C expression which determines whether x, a floating point value, is

infinity. The value has type int. By default, this is defined to call isinf.

Chapter 14: Target Description Macros 349

REAL_VALUE_ISNAN (x)

A macro for a C expression which determines whether x, a floating point value, is a

“nan” (not-a-number). The value has type int. By default, this is defined to call

isnan.

Define the following additional macros if you want to make floating point constant folding work

while cross compiling. If you don’t define them, cross compilation is still possible, but constant

folding will not happen for floating point values.

REAL_ARITHMETIC (output, code, x, y)

A macro for a C statement which calculates an arithmetic operation of the two floating

point values x and y, both of type REAL_VALUE_TYPE in the target machine’s repre-

sentation, to produce a result of the same type and representation which is stored in

output (which will be a variable).

The operation to be performed is specified by code, a tree code which will always

be one of the following: PLUS_EXPR, MINUS_EXPR, MULT_EXPR, RDIV_EXPR, MAX_EXPR,

MIN_EXPR.

The expansion of this macro is responsible for checking for overflow. If overflow hap-

pens, the macro expansion should execute the statement return 0;, which indicates

the inability to perform the arithmetic operation requested.

REAL_VALUE_NEGATE (x)

A macro for a C expression which returns the negative of the floating point value x.

Both x and the value of the expression have type REAL_VALUE_TYPE and are in the

target machine’s floating point representation.

There is no way for this macro to report overflow, since overflow can’t happen in the

negation operation.

REAL_VALUE_TRUNCATE (mode, x)

A macro for a C expression which converts the floating point value x to mode mode.

Both x and the value of the expression have type REAL_VALUE_TYPE and are in the

target machine’s floating point representation. However, the value should have an

appropriate bit pattern to be output properly as a floating constant whose precision

accords with mode mode.

There is no way for this macro to report overflow.

REAL_VALUE_TO_INT (low, high, x)

A macro for a C expression which converts a floating point value x into a double-

precision integer which is then stored into low and high, two variables of type int.

350 Using and Porting GNU CC

REAL_VALUE_FROM_INT (x, low, high)

A macro for a C expression which converts a double-precision integer found in low and

high, two variables of type int, into a floating point value which is then stored into x.

14.19 Miscellaneous Parameters

PREDICATE_CODES

Optionally define this if you have added predicates to ‘machine.c’. This macro is called

within an initializer of an array of structures. The first field in the structure is the name

of a predicate and the second field is an array of rtl codes. For each predicate, list all

rtl codes that can be in expressions matched by the predicate. The list should have

a trailing comma. Here is an example of two entries in the list for a typical RISC

machine:

#define PREDICATE_CODES \
{"gen_reg_rtx_operand", {SUBREG, REG}}, \
{"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},

Defining this macro does not affect the generated code (however, incorrect definitions

that omit an rtl code that may be matched by the predicate can cause the compiler to

malfunction). Instead, it allows the table built by ‘genrecog’ to be more compact and

efficient, thus speeding up the compiler. The most important predicates to include in

the list specified by this macro are thoses used in the most insn patterns.

CASE_VECTOR_MODE

An alias for a machine mode name. This is the machine mode that elements of a

jump-table should have.

CASE_VECTOR_PC_RELATIVE

Define this macro if jump-tables should contain relative addresses.

CASE_DROPS_THROUGH

Define this if control falls through a case insn when the index value is out of range.

This means the specified default-label is actually ignored by the case insn proper.

CASE_VALUES_THRESHOLD

Define this to be the smallest number of different values for which it is best to use a

jump-table instead of a tree of conditional branches. The default is four for machines

with a casesi instruction and five otherwise. This is best for most machines.

BYTE_LOADS_ZERO_EXTEND

Define this macro if an instruction to load a value narrower than a word from memory

into a register also zero-extends the value to the whole register.

Chapter 14: Target Description Macros 351

BYTE_LOADS_SIGN_EXTEND

Define this macro if an instruction to load a value narrower than a word from memory

into a register also sign-extends the value to the whole register.

IMPLICIT_FIX_EXPR

An alias for a tree code that should be used by default for conversion of floating point

values to fixed point. Normally, FIX_ROUND_EXPR is used.

FIXUNS_TRUNC_LIKE_FIX_TRUNC

Define this macro if the same instructions that convert a floating point number to a

signed fixed point number also convert validly to an unsigned one.

EASY_DIV_EXPR

An alias for a tree code that is the easiest kind of division to compile code for in

the general case. It may be TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR or

ROUND_DIV_EXPR. These four division operators differ in how they round the result to

an integer. EASY_DIV_EXPR is used when it is permissible to use any of those kinds of

division and the choice should be made on the basis of efficiency.

MOVE_MAX The maximum number of bytes that a single instruction can move quickly from memory

to memory.

SHIFT_COUNT_TRUNCATED

Defining this macro causes the compiler to omit a sign-extend, zero-extend, or bitwise

‘and’ instruction that truncates the count of a shift operation to a width equal to the

number of bits needed to represent the size of the object being shifted. On machines

that have instructions that act on bitfields at variable positions, which may include ‘bit

test’ instructions, defining SHIFT_COUNT_TRUNCATED also enables deletion of truncations

of the values that serve as arguments to bitfield instructions.

If both types of instructions truncate the count (for shifts) and position (for bitfield

operations), or if no variable-position bitfield instructions exist, you should define this

macro.

However, on some machines, such as the 80386 and the 680x0, truncation only applies

to shift operations and not the (real or pretended) bitfield operations. Do not define

SHIFT_COUNT_TRUNCATED on such machines. Instead, add patterns to the ‘md’ file that

include the implied truncation of the shift instructions.

TRULY_NOOP_TRUNCATION (outprec, inprec)

A C expression which is nonzero if on this machine it is safe to “convert” an integer

of inprec bits to one of outprec bits (where outprec is smaller than inprec) by merely

operating on it as if it had only outprec bits.

On many machines, this expression can be 1.

352 Using and Porting GNU CC

It is reported that suboptimal code can result when TRULY_NOOP_TRUNCATION returns

1 for a pair of sizes for modes for which MODES_TIEABLE_P is 0. If this is the case,

making TRULY_NOOP_TRUNCATION return 0 in such cases may improve things.

STORE_FLAG_VALUE

A C expression describing the value returned by a comparison operator with an integral

mode and stored by a store-flag instruction (‘scond’) when the condition is true. This

description must apply to all the ‘scond’ patterns and all the comparison operators

whose results have a MODE_INT mode.

A value of 1 or -1 means that the instruction implementing the comparison operator

returns exactly 1 or -1 when the comparison is true and 0 when the comparison is false.

Otherwise, the value indicates which bits of the result are guaranteed to be 1 when the

comparison is true. This value is interpreted in the mode of the comparison operation,

which is given by the mode of the first operand in the ‘scond’ pattern. Either the low

bit or the sign bit of STORE_FLAG_VALUE be on. Presently, only those bits are used by

the compiler.

If STORE_FLAG_VALUE is neither 1 or -1, the compiler will generate code that depends

only on the specified bits. It can also replace comparison operators with equivalent

operations if they cause the required bits to be set, even if the remaining bits are

undefined. For example, on a machine whose comparison operators return an SImode

value and where STORE_FLAG_VALUE is defined as ‘0x80000000’, saying that just the

sign bit is relevant, the expression

(ne:SI (and:SI x (const_int power-of-2)) (const_int 0))

can be converted to

(ashift:SI x (const_int n))

where n is the appropriate shift count to move the bit being tested into the sign bit.

There is no way to describe a machine that always sets the low-order bit for a true

value, but does not guarantee the value of any other bits, but we do not know of any

machine that has such an instruction. If you are trying to port GNU CC to such a

machine, include an instruction to perform a logical-and of the result with 1 in the

pattern for the comparison operators and let us know (see Section 6.3 [Bug Reporting],

page 141).

Often, a machine will have multiple instructions that obtain a value from a com-

parison (or the condition codes). Here are rules to guide the choice of value for

STORE_FLAG_VALUE, and hence the instructions to be used:

• Use the shortest sequence that yields a valid definition for STORE_FLAG_VALUE. It

is more efficient for the compiler to “normalize” the value (convert it to, e.g., 1 or

0) than for the comparison operators to do so because there may be opportunities

to combine the normalization with other operations.

Chapter 14: Target Description Macros 353

• For equal-length sequences, use a value of 1 or -1, with -1 being slightly preferred

on machines with expensive jumps and 1 preferred on other machines.

• As a second choice, choose a value of ‘0x80000001’ if instructions exist that set

both the sign and low-order bits but do not define the others.

• Otherwise, use a value of ‘0x80000000’.

You need not define STORE_FLAG_VALUE if the machine has no store-flag instructions.

FLOAT_STORE_FLAG_VALUE

A C expression that gives a non-zero floating point value that is returned when com-

parison operators with floating-point results are true. Define this macro on machine

that have comparison operations that return floating-point values. If there are no such

operations, do not define this macro.

Pmode An alias for the machine mode for pointers. Normally the definition can be

#define Pmode SImode

FUNCTION_MODE

An alias for the machine mode used for memory references to functions being called,

in call RTL expressions. On most machines this should be QImode.

INTEGRATE_THRESHOLD (decl)

A C expression for the maximum number of instructions above which the function decl

should not be inlined. decl is a FUNCTION_DECL node.

The default definition of this macro is 64 plus 8 times the number of arguments that

the function accepts. Some people think a larger threshold should be used on RISC

machines.

SCCS_DIRECTIVE

Define this if the preprocessor should ignore #sccs directives and print no error mes-

sage.

HANDLE_PRAGMA (stream)

Define this macro if you want to implement any pragmas. If defined, it should be a

C statement to be executed when #pragma is seen. The argument stream is the stdio

input stream from which the source text can be read.

It is generally a bad idea to implement new uses of #pragma. The only reason to define

this macro is for compatibility with other compilers that do support #pragma for the

sake of any user programs which already use it.

DOLLARS_IN_IDENTIFIERS

Define this macro to control use of the character ‘$’ in identifier names. The value

should be 0, 1, or 2. 0 means ‘$’ is not allowed by default; 1 means it is allowed by

default if ‘-traditional’ is used; 2 means it is allowed by default provided ‘-ansi’ is

not used. 1 is the default; there is no need to define this macro in that case.

354 Using and Porting GNU CC

NO_DOLLAR_IN_LABEL

Define this macro if the assembler does not accept the character ‘$’ in label names. By

default constructors and destructors in G++ have ‘$’ in the identifiers. If this macro is

defined, ‘.’ is used instead.

DEFAULT_MAIN_RETURN

Define this macro if the target system expects every program’s main function to return

a standard “success” value by default (if no other value is explicitly returned).

The definition should be a C statement (sans semicolon) to generate the appropriate

rtl instructions. It is used only when compiling the end of main.

HAVE_ATEXIT

Define this if the target system supports the function atexit from the ANSI C stan-

dard. If this is not defined, and INIT_SECTION_ASM_OP is not defined, a default exit

function will be provided to support C++.

EXIT_BODY

Define this if your exit function needs to do something besides calling an external func-

tion _cleanup before terminating with _exit. The EXIT_BODY macro is only needed if

netiher HAVE_ATEXIT nor INIT_SECTION_ASM_OP are defined.

Chapter 15: The Configuration File 355

15 The Configuration File

The configuration file ‘xm-machine.h’ contains macro definitions that describe the machine and

system on which the compiler is running, unlike the definitions in ‘machine.h’, which describe the

machine for which the compiler is producing output. Most of the values in ‘xm-machine.h’ are

actually the same on all machines that GNU CC runs on, so large parts of all configuration files

are identical. But there are some macros that vary:

USG Define this macro if the host system is System V.

VMS Define this macro if the host system is VMS.

FAILURE_EXIT_CODE

A C expression for the status code to be returned when the compiler exits after serious

errors.

SUCCESS_EXIT_CODE

A C expression for the status code to be returned when the compiler exits without

serious errors.

HOST_WORDS_BIG_ENDIAN

Defined if the host machine stores words of multi-word values in big-endian order.

(GNU CC does not depend on the host byte ordering within a word.)

HOST_FLOAT_FORMAT

A numeric code distinguishing the floating point format for the host machine. See

TARGET_FLOAT_FORMAT in Section 14.3 [Storage Layout], page 271 for the alternatives

and default.

HOST_BITS_PER_CHAR

A C expression for the number of bits in char on the host machine.

HOST_BITS_PER_SHORT

A C expression for the number of bits in short on the host machine.

HOST_BITS_PER_INT

A C expression for the number of bits in int on the host machine.

HOST_BITS_PER_LONG

A C expression for the number of bits in long on the host machine.

ONLY_INT_FIELDS

Define this macro to indicate that the host compiler only supports int bit fields, rather

than other integral types, including enum, as do most C compilers.

356 Using and Porting GNU CC

EXECUTABLE_SUFFIX

Define this macro if the host system uses a naming convention for executable files that

involves a common suffix (such as, in some systems, ‘.exe’) that must be mentioned

explicitly when you run the program.

OBSTACK_CHUNK_SIZE

A C expression for the size of ordinary obstack chunks. If you don’t define this, a

usually-reasonable default is used.

OBSTACK_CHUNK_ALLOC

The function used to allocate obstack chunks. If you don’t define this, xmalloc is used.

OBSTACK_CHUNK_FREE

The function used to free obstack chunks. If you don’t define this, free is used.

USE_C_ALLOCA

Define this macro to indicate that the compiler is running with the alloca implemented

in C. This version of alloca can be found in the file ‘alloca.c’; to use it, you must

also alter the ‘Makefile’ variable ALLOCA. (This is done automatically for the systems

on which we know it is needed.)

If you do define this macro, you should probably do it as follows:

#ifndef __GNUC__
#define USE_C_ALLOCA
#else
#define alloca __builtin_alloca
#endif

so that when the compiler is compiled with GNU CC it uses the more efficient built-in

alloca function.

FUNCTION_CONVERSION_BUG

Define this macro to indicate that the host compiler does not properly handle converting

a function value to a pointer-to-function when it is used in an expression.

HAVE_VPRINTF

Define this if the library function vprintf is available on your system.

MULTIBYTE_CHARS

Define this macro to enable support for multibyte characters in the input to GNU CC.

This requires that the host system support the ANSI C library functions for converting

multibyte characters to wide characters.

HAVE_PUTENV

Define this if the library function putenv is available on your system.

NO_SYS_SIGLIST

Define this if your system does not provide the variable sys_siglist.

Chapter 15: The Configuration File 357

USE_PROTOTYPES

Define this to be 1 if you know that the host compiler supports prototypes, even if

it doesn’t define STDC , or define it to be 0 if you do not want any prototypes

used in compiling GNU CC. If ‘USE_PROTOTYPES’ is not defined, it will be determined

automatically whether your compiler supports prototypes by checking if ‘__STDC__’ is

defined.

NO_MD_PROTOTYPES

Define this if you wish suppression of prototypes generated from the machine descrip-

tion file, but to use other prototypes within GNU CC. If ‘USE_PROTOTYPES’ is defined

to be 0, or the host compiler does not support prototypes, this macro has no effect.

MD_CALL_PROTOTYPES

Define this if you wish to generate prototypes for the gen_call or gen_call_value

functions generated from the machine description file. If ‘USE_PROTOTYPES’ is defined

to be 0, or the host compiler does not support prototypes, or ‘NO_MD_PROTOTYPES’

is defined, this macro has no effect. As soon as all of the machine descriptions are

modified to have the appropriate number of arguments, this macro will be removed.

Some systems do provide this variable, but with a different name such as _sys_siglist.

On these systems, you can define sys_siglist as a macro which expands into the name

actually provided.

NO_STAB_H

Define this if your system does not have the include file ‘stab.h’. If ‘USG’ is defined,

‘NO_STAB_H’ is assumed.

In addition, configuration files for system V define bcopy, bzero and bcmp as aliases. Some files

define alloca as a macro when compiled with GNU CC, in order to take advantage of the benefit

of GNU CC’s built-in alloca.

358 Using and Porting GNU CC

Index 359

Index

(Index is nonexistent)

360 Using and Porting GNU CC

i

Table of Contents

GNU GENERAL PUBLIC LICENSE . 1

Preamble . 1

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION . 2

How to Apply These Terms to Your New Programs . 7

Contributors to GNU CC . 9

1 Protect Your Freedom—Fight “Look And Feel” 11

2 GNU CC Command Options . 15

2.1 Option Summary . 15

2.2 Options Controlling the Kind of Output . 19

2.3 Options Controlling Dialect . 20

2.4 Options to Request or Suppress Warnings . 24

2.5 Options for Debugging Your Program or GNU CC 29

2.6 Options That Control Optimization . 32

2.7 Options Controlling the Preprocessor . 37

2.8 Passing Options to the Assembler . 39

2.9 Options for Linking . 39

2.10 Options for Directory Search . 41

2.11 Specifying Target Machine and Compiler Version 42

2.12 Specifying Hardware Models and Configurations 44

2.12.1 M680x0 Options . 44

2.12.2 VAX Options . 45

2.12.3 SPARC Options . 46

2.12.4 Convex Options . 46

2.12.5 AMD29K Options . 46

2.12.6 M88K Options . 47

2.12.7 IBM RS/6000 Options . 50

2.12.8 IBM RT Options . 50

2.12.9 MIPS Options . 51

2.12.10 Intel 386 Options . 54

2.12.11 HPPA Options . 54

2.12.12 Intel 960 Options . 55

2.12.13 DEC Alpha Options . 56

2.12.14 Options for System V . 57

ii Using and Porting GNU CC

2.13 Options for Code Generation Conventions . 57

2.14 Environment Variables Affecting GNU CC . 60

2.15 Running Protoize . 62

3 Installing GNU CC . 65

3.1 Compilation in a Separate Directory . 75

3.2 Building and Installing a Cross-Compiler . 75

3.3 Installing GNU CC on the HP Precision Architecture 77

3.4 Installing GNU CC on the Sun . 78

3.5 Installing GNU CC on the 3b1 . 79

3.6 Installing GNU CC on Unos . 79

3.7 Installing GNU CC on VMS . 80

3.8 Installing GNU CC on the WE32K . 83

3.9 Installing GNU CC on the MIPS . 84

4 GNU Extensions to the C Language . 87

4.1 Statements and Declarations within Expressions 87

4.2 Locally Declared Labels . 88

4.3 Labels as Values . 89

4.4 Nested Functions . 90

4.5 Naming an Expression’s Type . 93

4.6 Referring to a Type with typeof . 93

4.7 Generalized Lvalues . 94

4.8 Conditional Expressions with Omitted Operands 96

4.9 Double-Word Integers . 96

4.10 Arrays of Length Zero . 97

4.11 Arrays of Variable Length . 97

4.12 Macros with Variable Numbers of Arguments . 99

4.13 Non-Lvalue Arrays May Have Subscripts . 100

4.14 Arithmetic on void- and Function-Pointers . 100

4.15 Non-Constant Initializers . 101

4.16 Constructor Expressions . 101

4.17 Labeled Elements in Initializers . 102

4.18 Case Ranges . 104

4.19 Cast to a Union Type . 105

4.20 Declaring Attributes of Functions . 105

4.21 Prototypes and Old-Style Function Definitions 108

4.22 Dollar Signs in Identifier Names . 109

4.23 The Character ESC in Constants . 109

4.24 Inquiring on Alignment of Types or Variables 109

4.25 Specifying Attributes of Variables . 110

4.26 An Inline Function is As Fast As a Macro . 111

iii

4.27 Assembler Instructions with C Expression Operands 113

4.28 Controlling Names Used in Assembler Code . 117

4.29 Variables in Specified Registers . 118

4.29.1 Defining Global Register Variables . 118

4.29.2 Specifying Registers for Local Variables 120

4.30 Alternate Keywords . 121

4.31 Incomplete enum Types . 122

5 Known Causes of Trouble with GNU CC 123

5.1 Actual Bugs We Haven’t Fixed Yet . 123

5.2 Installation Problems . 123

5.3 Cross-Compiler Problems . 126

5.4 Interoperation . 126

5.5 Incompatibilities of GNU CC . 130

5.6 Disappointments and Misunderstandings . 133

5.7 Caveats of using protoize . 134

5.8 Certain Changes We Don’t Want to Make . 135

6 Reporting Bugs . 139

6.1 Have You Found a Bug? . 139

6.2 Where to Report Bugs . 140

6.3 How to Report Bugs . 141

6.4 Sending Patches for GNU CC . 145

7 How To Get Help with GNU CC . 149

8 Using GNU CC on VMS . 151

8.1 Include Files and VMS . 151

8.2 Global Declarations and VMS . 152

8.3 Other VMS Issues . 155

9 GNU CC and Portability . 157

10 Interfacing to GNU CC Output . 159

11 Passes and Files of the Compiler . 161

iv Using and Porting GNU CC

12 RTL Representation . 167

12.1 RTL Object Types . 167

12.2 Access to Operands . 168

12.3 Flags in an RTL Expression . 171

12.4 Machine Modes . 174

12.5 Constant Expression Types . 178

12.6 Registers and Memory . 180

12.7 RTL Expressions for Arithmetic . 184

12.8 Comparison Operations . 187

12.9 Bit Fields . 189

12.10 Conversions . 189

12.11 Declarations . 191

12.12 Side Effect Expressions . 191

12.13 Embedded Side-Effects on Addresses . 195

12.14 Assembler Instructions as Expressions . 197

12.15 Insns . 197

12.16 RTL Representation of Function-Call Insns . 206

12.17 Structure Sharing Assumptions . 207

13 Machine Descriptions . 209

13.1 Everything about Instruction Patterns . 209

13.2 Example of define insn . 210

13.3 RTL Template for Generating and Recognizing Insns 211

13.4 Output Templates and Operand Substitution 215

13.5 C Statements for Generating Assembler Output 216

13.6 Operand Constraints . 218

13.6.1 Simple Constraints . 218

13.6.2 Multiple Alternative Constraints . 223

13.6.3 Register Class Preferences . 224

13.6.4 Constraint Modifier Characters . 225

13.6.5 Not Using Constraints . 226

13.7 Standard Names for Patterns Used in Generation 226

13.8 When the Order of Patterns Matters . 236

13.9 Interdependence of Patterns . 236

13.10 Defining Jump Instruction Patterns . 238

13.11 Canonicalization of Instructions . 240

13.12 Defining Machine-Specific Peephole Optimizers 241

13.13 Defining RTL Sequences for Code Generation 245

13.14 Splitting Instructions into Multiple Instructions 248

13.15 Instruction Attributes . 251

13.15.1 Defining Attributes and their Values 252

13.15.2 Attribute Expressions . 253

v

13.15.3 Assigning Attribute Values to Insns 255

13.15.4 Example of Attribute Specifications 257

13.15.5 Computing the Length of an Insn . 258

13.15.6 Constant Attributes . 260

13.15.7 Delay Slot Scheduling . 260

13.15.8 Specifying Function Units . 262

14 Target Description Macros . 265

14.1 Controlling the Compilation Driver, ‘gcc’ . 265

14.2 Run-time Target Specification . 269

14.3 Storage Layout . 271

14.4 Layout of Source Language Data Types . 276

14.5 Register Usage . 279

14.5.1 Basic Characteristics of Registers . 279

14.5.2 Order of Allocation of Registers . 280

14.5.3 How Values Fit in Registers . 281

14.5.4 Handling Leaf Functions . 282

14.5.5 Registers That Form a Stack . 283

14.5.6 Obsolete Macros for Controlling Register Usage 284

14.6 Register Classes . 285

14.7 Describing Stack Layout and Calling Conventions 291

14.7.1 Basic Stack Layout . 291

14.7.2 Registers That Address the Stack Frame 292

14.7.3 Eliminating Frame Pointer and Arg Pointer 293

14.7.4 Passing Function Arguments on the Stack 295

14.7.5 Passing Arguments in Registers . 297

14.7.6 How Scalar Function Values Are Returned 300

14.7.7 How Large Values Are Returned . 302

14.7.8 Caller-Saves Register Allocation . 303

14.7.9 Function Entry and Exit . 303

14.7.10 Generating Code for Profiling . 306

14.8 Implementing the Varargs Macros . 307

14.9 Trampolines for Nested Functions . 310

14.10 Implicit Calls to Library Routines . 312

14.11 Addressing Modes . 315

14.12 Condition Code Status . 318

14.13 Describing Relative Costs of Operations . 320

14.14 Dividing the Output into Sections (Texts, Data, . . .) 323

14.15 Position Independent Code . 325

14.16 Defining the Output Assembler Language . 326

14.16.1 The Overall Framework of an Assembler File 326

14.16.2 Output of Data . 327

vi Using and Porting GNU CC

14.16.3 Output of Uninitialized Variables . 329

14.16.4 Output and Generation of Labels . 330

14.16.5 How Initialization Functions Are Handled 333

14.16.6 Macros Controlling Initialization Routines 336

14.16.7 Output of Assembler Instructions . 337

14.16.8 Output of Dispatch Tables . 339

14.16.9 Assembler Commands for Alignment 340

14.17 Controlling Debugging Information Format . 341

14.17.1 Macros Affecting All Debugging Formats 341

14.17.2 Specific Options for DBX Output . 342

14.17.3 Open-Ended Hooks for DBX Format 344

14.17.4 File Names in DBX Format . 345

14.17.5 Macros for SDB and DWARF Output 346

14.18 Cross Compilation and Floating Point Format 347

14.19 Miscellaneous Parameters . 350

15 The Configuration File . 355

Index . 359

